Loading...
Search for:
porous-nanocomposites
0.008 seconds
Development of porous nanocomposite membranes for gas separation by identifying the effective fabrication parameters with Plackett–Burman experimental design
, Article Journal of Porous Materials ; Volume 23, Issue 5 , 2016 , Pages 1279-1295 ; 13802224 (ISSN) ; Safekordi, A ; Rashidzadeh, M ; Khanbabaei, G ; Akbari Anari, R ; Rahimpour, M ; Sharif University of Technology
Springer New York LLC
2016
Abstract
In this research, Plackett–Burman experimental design was used as a screening method to investigate seven processing factors in the preparation of new polyethersulfone based porous nanocomposite membrane. Polymer concentration, nanoparticle type, nanoparticle concentration, solvent type, solution mixing time, evaporation time, and annealing temperature are variables that were evaluated to fabricate mixed matrix membranes using the evaporation phase inversion method for gas separation. According to obtained results, polymer concentration, nanoparticle concentration, solution mixing time, and evaporation time processing factors had significant effects on gas permeation. In addition, the...
Preparation of porous graphene oxide/hydrogel nanocomposites and their ability for efficient adsorption of methylene blue
, Article RSC Advances ; Volume 6, Issue 13 , 2016 , Pages 10430-10437 ; 20462069 (ISSN) ; Nazari, M ; Kabiri, B ; Hosseini, S. H ; Bennett, C ; Sharif University of Technology
Royal Society of Chemistry
2016
Abstract
Porous nanocomposite hydrogels were prepared using CaCO3 particles as solid porogens. The hydrogels were prepared by polymerization and grafting of acrylamide and 2-acrylamido-2-methylpropane sulfonic acid onto the starch in the presence of CaCO3 and graphene oxide. CaCO3 solid porogens were then removed by washing with acid and porous structures were obtained. The prepared hydrogels were used as adsorbents for methylene blue as a model cationic dye; and a very high adsorption capacity, up to 714.29 mg g-1, was obtained. Kinetics and isotherms of adsorption and the effect of porosity of hydrogel as well as other experimental conditions were also investigated. The prepared adsorbents were...
Fabrication of a highly ordered hierarchically designed porous nanocomposite via indirect 3D printing: Mechanical properties and in vitro cell responses
, Article Materials and Design ; Volume 88 , 2015 , Pages 924-931 ; 02641275 (ISSN) ; Simchi, A ; Sharif University of Technology
Elsevier Ltd
2015
Abstract
Design and development of biodegradable scaffolds with highly uniform and controlled internal structure that stimulate tissue regeneration are the focus of many studies. The aim of this work is to apply a modified three-dimensional (3D) printing process to fabricate polymer-matrix composites with controlled internal architecture. Computationally-designed plaster molds with various pore sizes in the range of 300-800. μm were prepared by employing 3D printing of a water-based binder. The molds were converted to ε-polycaprolactone (PCL) and PCL/bioactive glass (BG) composite scaffolds by solvent casting and freeze drying methods. Optical and electron microscopy studies revealed that the pore...