Loading...
Search for: positioning-accuracy
0.005 seconds

    Investigation of the micro-step control positioning system performance affected by random input signals

    , Article Mechatronics ; Volume 15, Issue 10 , 2005 , Pages 1175-1189 ; 09574158 (ISSN) Selk Ghafari, A ; Behzad, M ; Sharif University of Technology
    2005
    Abstract
    This paper gives the results of simulation and experimental investigation on the effects of random signals on the accuracy of micro-stepping control positioning. For studying and simulation of the effect of random noise signals on performance of the accurate position control systems, such as Hybrid Stepper Motors (HSMs), a micro-step driver and controlling unit using PID controller has been designed and constructed. Several parametric studies have been carried out including different white noise power and micro-step per revolution. Tracking problem for a HSM model has been simulated, and the experimental study for similar cases has been carried out by implementing the designed controller in... 

    Investigation of in-orbit disturbing loads induced on spacecraft due to elastic deploying arm

    , Article International Journal of Structural Stability and Dynamics ; Volume 13, Issue 4 , 2013 ; 02194554 (ISSN) Ghaleh, P. B ; Malaek, S. M ; Sharif University of Technology
    2013
    Abstract
    The loads induced on the spacecraft orbiting the Earth by the deploying elastic arm are investigated. The coupled equations of motion of the arm with the vehicle orbital mechanics are used to describe the 3D dynamic behavior of the flexible-appendage and the related disturbing loads induced on the spacecraft. To this end, an equivalent dynamical system is derived for the arm by applying an attached Non-Newtonian Reference Frame which is subjected to the orbital motion and geocentric pointing maneuver of the spacecraft. With the help of the Assumed Modes Method, the behavior of the arm attached to the spacecraft in Keplerian orbits is studied. The results show that deploying the arm in some... 

    Calibration of hexaglide parallel manipulators using only input joint variables

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 11 , 2009 , Pages 861-867 ; 9780791848722 (ISBN) Abtahi, M ; Pendar, H ; Alasty, A ; Vossoughi, G. R ; Sharif University of Technology
    2009
    Abstract
    In the application of parallel robots, it is necessary to calibrate the geometric parameters and improve the positioning accuracy for accurate task performance. Traditionally, to perform system calibration, one needs to measure a number of robot poses using an external measuring device. However, this process is often time-consuming, expensive and difficult for robot on-line calibration. In this paper, a methodical way of self-calibrating of Hexaglide parallel robot is introduced. This method is performable only by measuring input joint variables in some sets of configurations where in each set center of the end-effector is fixed, but orientations are different. Simulations give us an idea... 

    Kinematic calibration of the hexaglide parallel robot using a simple measurement system

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 11 , 2009 , Pages 853-859 ; 9780791848722 (ISBN) Abtahi, M ; Pendar, H ; Alasty, A ; Vossoughi, G. R ; Sharif University of Technology
    2009
    Abstract
    Because of errors in the geometric parameters of the parallel robots, it is necessary to calibrate them to improve the positioning accuracy for accurate task performance. Traditionally, to perform system calibration, one needs to measure a number of robot poses using an external measuring device. However, this process is often time-consuming, expensive and difficult for robot on-line calibration. In this paper, a methodical way of self-calibrating of Hexaglide parallel robot is introduced. This method is performable only by measuring input joint variables and errors of positioning relative to the desired position in some sets of configurations where in each set the desired position is fixed,... 

    Optimal sensor placement for 2-d range-only target localization in constrained sensor geometry

    , Article IEEE Transactions on Signal Processing ; Volume 68 , 2020 , Pages 2316-2327 Sadeghi, M ; Behnia, F ; Amiri, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Localization of an emitting or reflecting target is one of the most important issues in a wide range of applications including radar, sonar, wireless communication and sensor networks. Due to significant effect on the positioning accuracy, designing the optimal sensor-target geometry has been considered as an important problem in the localization literature. The existing sensor placement methods mainly solve the problem in the cases without any constraints on the sensors locations. In the realistic scenarios, however, the sensors cannot be placed simply in arbitrary locations due to such constraints as the geographical limitations, communication problems between the sensor pairs and the... 

    Experimental kinematic calibration of parallel manipulators using a relative position error measurement system

    , Article Robotics and Computer-Integrated Manufacturing ; Vol. 26, Issue 6 , 2010 , pp. 799-804 ; ISSN: 07365845 Abtahi, M ; Pendar, H ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    Abstract
    Because of errors in the geometric parameters of parallel robots, it is necessary to calibrate them to improve the positioning accuracy for accurate task performance. Traditionally, to perform system calibration, one needs to measure a number of robot poses using an external measuring device. However, this process is often time-consuming, expensive and difficult for robot on-line calibration. In this paper, a methodical way of calibration of parallel robots is introduced. This method is performable only by measuring joint variable vector and positioning differences relative to a constant position in some sets of configurations that the desired positions in each set are fixed, but the moving... 

    State estimation, positioning and anti-swing robust control of traveling crane-lifter system

    , Article Applied Mathematical Modelling ; March , 2015 ; 0307904X (ISSN) Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    Under different loading conditions, the over-head cranes may experience a wide range of model parameters variation. A robust control strategy is developed to achieve the high positioning accuracy, short transportation time and suppression of swing angle for an uncertain over-head crane system. Over-head crane is modeled as a three degrees of freedom system and control problem is investigated for two cases: a system with a single control input (the force on trolley) and a system with two control inputs (the force on trolley and the torque on lifter). Regulator and observer systems are designed. To achieve the tracking objectives, an optimal robust controller is designed based on μ-synthesis... 

    Location finding in wireless sensor network based on soft computing methods

    , Article 2011 International Conference on Control, Automation and Systems Engineering, CASE 2011, 30 July 2011 through 31 July 2011 ; July , 2011 , Page(s): 1 - 5 ; 9781457708602 (ISBN) Nekooei, S. M ; Manzuri Shalmani, M. T ; Singapore Management University ; Sharif University of Technology
    2011
    Abstract
    Sensor Localization is a crucial part of many location-dependent applications that is utilized in wireless sensor networks (WSNs). Several approaches, including range-based and range-free, have been proposed to calculate the position of randomly deployed sensor nodes. With specific hardware, the range-based schemes typically achieve high accuracy based on either node-to-node distances or angles. On the other hand, the range-free mechanisms support less positioning accuracy with less expense. The proposed scheme is based on range-free localization, which utilizes the received signal strength (RSS) from the anchor nodes. In this work, genetic fuzzy and neuro-fuzzy methods are used to become... 

    State estimation, positioning and anti-swing robust control of traveling crane-lifter system

    , Article Applied Mathematical Modelling ; Volume 39, Issue 22 , 2015 , Pages 6990-7007 ; 0307904X (ISSN) Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    Under different loading conditions, the over-head cranes may experience a wide range of model parameters variation. A robust control strategy is developed to achieve the high positioning accuracy, short transportation time and suppression of swing angle for an uncertain over-head crane system. Over-head crane is modeled as a three degrees of freedom system and control problem is investigated for two cases: a system with a single control input (the force on trolley) and a system with two control inputs (the force on trolley and the torque on lifter). Regulator and observer systems are designed. To achieve the tracking objectives, an optimal robust controller is designed based on μ-synthesis... 

    Calibration of parallel kinematic machine tools using mobility constraint on the tool center point

    , Article International Journal of Advanced Manufacturing Technology ; Volume 45, Issue 5-6 , 2009 , Pages 531-539 ; 02683768 (ISSN) Abtahi, M ; Pendar, H ; Alasty, A ; Vossoughi, G. R ; Sharif University of Technology
    2009
    Abstract
    In the application of parallel kinematic machine tools (PKM), because of errors in the geometric parameters, it is necessary to calibrate the PKM to improve the positioning accuracy. In existing self-calibration methods, either some redundant sensors on passive joints or some mobility constraints on the kinematic chains are used. However, the mobility constraints imposed on kinematic chains might apply large forces during the test on legs and passive joints. Also, these kinds of calibrating are applicable only on PKMs in which their actuated joints can be used as passive joints. To overcome weaknesses of existing methods, a novel approach to calibration based on imposing position constraints... 

    Moving target localization in bistatic forward scatter radars: performance study and efficient estimators

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 56, Issue 2 , 2020 , Pages 1582-1594 Hamdollahzadeh, M ; Amiri, R ; Behnia, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This paper considers the localization of a moving target using a forward scatter radar consisting of a transmitter and an array antenna receiver. A direct positioning method based on maximum likelihood (ML) estimation is proposed and compared with the conventional two-step method in which the primary parameters, including Doppler shift and angle of arrival, should be determined in the first step. Moreover, closed-form expressions for Cramer-Rao lower bound of both methods are derived. The aforementioned methods are comprehensively compared in terms of positioning accuracy and computational complexity. Theoretical performance study, including determining the minimum required observation time...