Loading...
Search for: positive-ions
0.007 seconds
Total 55 records

    An optimum catalyst for dehydration of 1, 4-butanediol in production of tetrahydrofuran

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Aghaziarati, M ; Kazemeini, M ; Soltanieh, M ; Sahebdelfar, S ; Sharif University of Technology
    2006
    Abstract
    In the present work, Tetrahydrofuran was produced from 1,4-butanediol by catalytically dehydration of 1,4-butanediol in contact with a catalyst. Material used as catalyst were Synthesized and natural zeolites as well as alumina and silica. Synthesized zeolites were investigated in different aspect such as pore size, cation and Si/Al ratio. Results indicated that with increasing the Si/Al ratio, the activity of the zeolite used for 1, 4-butanediol dehydration step was reduced. Furthermore, it was observed that, upon the replacement of sodium with hydrogen and ammonium cations, the conversion of the 1, 4-butanediol into tetrahydrofuran was increased. It was shown zeolites possessing smaller... 

    Spectroscopic evidence on improvement in complex formation of O2N2 aza-crown macrocyclic ligands with Cu(II) acetate upon incorporation with [60]fullerene

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 169 , 2016 , Pages 202-207 ; 13861425 (ISSN) Ghanbari, B ; Gholamnezhad, P ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    The present paper reports the spectroscopic investigations on the complexation of Cu(II) with two macrocyclic ligands bonded to [60]Fullerene (L1 and L2) measured in N-methylpyrrolidone (NMP) as solvent. On the basis of UV–vis-NIR spectroscopy applying Jobs method of continuous variation, typical 1:1 stoichiometries were established for the complexes of Cu(II) with L1, and L2. DFT calculations suggested that superior HOMO distributions spread over the nitrogen-donor (as well as somehow oxygen- donor in L2) groups of L1 and L2 macrocycles were the key factor for the observed Kb value enhancement. Thermodynamic stabilities for these complexes have also been determined employing... 

    Cobalt salophen-modified carbon-paste electrode incorporating a cationic surfactant for simultaneous voltammetric detection of ascorbic acid and dopamine

    , Article Sensors and Actuators, B: Chemical ; Volume 121, Issue 2 , 2007 , Pages 530-537 ; 09254005 (ISSN) Shahrokhian, S ; Zare Mehrjardi, H. R ; Sharif University of Technology
    2007
    Abstract
    A carbon-paste electrode (CPE) is modified by incorporating cobalt-5-nitrosalophen (CoNSal) and tetraoctylammonium bromide (TOAB). The mechanism of electrocatalytic oxidation of dopamine (DA) and ascorbic acid (AA) at the surface of the CoNSal-modified CPE containing various percents of TOAB is thoroughly investigated by cyclic and differential pulse voltammetry. In solutions of pH 5.0, in which all studies are performed, DA exists as the positively charged species whereas AA is mainly as the neutral form. Therefore, the favorable ionic interaction (electrostatic repulsion) between the cationic form of DA and the cationic surfactant (TOA+) caused increasing the overvoltage for DA and... 

    A theoretical analysis of the effects of erbium ion pair on the dynamics of an optical gain stabilized fiber amplifier

    , Article Optics Communications ; Volume 265, Issue 1 , 2006 , Pages 283-300 ; 00304018 (ISSN) Bahrampour, A. R ; Mahjoei, M ; Rasouli, A ; Sharif University of Technology
    2006
    Abstract
    In this paper, the effects of ion-pair formation on the gain dynamics of multi cavity optical automatic gain control erbium doped fiber amplifier is modelled. The inhomogeneous Cabezas simple model is used to write the rate and propagation equations for the active medium. The solution of the governing equations shows that in high concentration of the erbium ions, depending on the pumping rate, the relaxation oscillations are converted to nT-Periodic or even to chaotic behavior. Although the high concentration erbium ion in the optical amplifiers decreases the conversion efficiency and increases the threshold pump power, amplitude of the transient effects is reduced in the multi feedback-loop... 

    Modification of the GV-MSA model in obtaining the activity and osmotic coefficients of aqueous electrolyte solutions

    , Article Fluid Phase Equilibria ; Volume 240, Issue 2 , 2006 , Pages 167-172 ; 03783812 (ISSN) Mortazavi Manesh, S ; Taghikhani, V ; Ghotbi, C ; Sharif University of Technology
    2006
    Abstract
    In this work a modified form of the Ghotbi-Vera Mean Spherical Approximation model (MGV-MSA) has been used to correlate the mean ionic activity coefficients (MIAC) for a number of symmetric and asymmetric aqueous electrolyte solutions at 25 °C. In the proposed model the hard sphere as well as the electrostatic contributions to the MIAC and the osmotic coefficient of the previously GV-MSA model has been modified. The results of the proposed model for the MIAC of the electrolyte solutions studied in this work are used to directly calculate the values of the osmotic coefficients without introducing any new adjustable parameter. In the MGV-MSA model the cation diameter as well as the relative... 

    Application of the GV-MSA model to the electrolyte solutions containing mixed salts and mixed solvents

    , Article Fluid Phase Equilibria ; Volume 231, Issue 1 , 2005 , Pages 67-76 ; 03783812 (ISSN) Salimi, H. R ; Taghikhani, V ; Ghotbi, C ; Sharif University of Technology
    2005
    Abstract
    In this work the Ghotbi-Vera mean spherical approximation (GV-MSA) model, coupled with two different expressions for the cation-hydrated diameters, was used in predicting the mean ionic activity coefficients (MIAC) of electrolytes for a number of the mixed-solvent and mixed-salt electrolyte solutions at 25 °C. In all cases the cation diameters in solutions changed with concentration of electrolyte while the anion diameters were considered to be constant and equal to the corresponding Pauling diameters. In application of the GV-MSA model to the electrolyte systems, two different expressions were used for concentration dependency of cation-hydrated diameters, i.e., the GV-MSA1 and GV-MSA2... 

    Ultra-sensitive detection of leukemia by graphene

    , Article Nanoscale ; Vol. 6, issue. 24 , Dec , 2014 , p. 14810-14819 Akhavan, O ; Ghaderi, E ; Hashemi, E ; Rahighi, R ; Sharif Universit of Technology
    Abstract
    Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ∼20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ∼10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks... 

    Electrostatically defying cation-cation clusters: Can likes attract in a low-polarity environment?

    , Article Journal of Physical Chemistry A ; Volume 117, Issue 38 , 2013 , Pages 9252-9258 ; 10895639 (ISSN) Shokri, A ; Ramezani, M ; Fattahi, A ; Kass, S. R ; Sharif University of Technology
    2013
    Abstract
    Like-charge ion pairing is commonly observed in protein structures and plays a significant role in biochemical processes. Density functional calculations combined with the conductor-like polarizable continuum model were employed to study the formation possibilities of doubly charged noncovalently linked complexes of a series of model compounds and amino acids in the gas phase and in solution. Hydrogen bond interactions were found to offset the Coulombic repulsion such that cation-cation clusters are minima on the potential energy surfaces and neither counterions nor solvent molecules are needed to hold them together. In the gas phase the dissociation energies are exothermic, and the... 

    Effect of bentonite binder on adsorption and cation exchange properties of granulated nano NaY zeolite

    , Article Advanced Materials Research ; Volume 335-336 , 2011 , Pages 423-428 ; 10226680 (ISSN) ; 9783037852460 (ISBN) Amir, C ; Mohammad, K ; Javad, A. S ; Sareh, A. A ; Sharif University of Technology
    Abstract
    In order to investigate the effect of bentonite binder on adsorption and cation exchange properties of granulated nano NaY zeolite, the adsorption of Xe and N 2 and removal of Sr 2+ ion from aqueous solution was studied. The results showed that increase in bentonite content of granules from 20 to 40 weight percent caused increase in the rupture load of granules by 232%, decrease in BET surface area by 66% and lower the Sr 2+ uptake percentage by 35%. The Henry's law constant, heat of adsorption, effective crystal diffusivity as well as activation energy of diffusion of Xe over granulated nano NaY with 25% bentonite was also measured by pulse chromatography method. Obtained results were... 

    H2S gasochromic effect of mixed ammonium salts of phosphomolybdate nanoparticles synthesized by microwave assisted technique

    , Article Sensors and Actuators, B: Chemical ; Volume 237 , 2016 , Pages 715-723 ; 09254005 (ISSN) Imani, M ; Iraji zad, A ; Tadjarodi, A ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    In the present paper, new H2S gasochromic nanomaterial of mixed silver nickel ammonium phosphomolybdate synthesized by microwave assisted technique is reported. The microwave treatment was performed in the solid phase using urea and ammonium nitrate as the promoter and oxidizer agents. The designed process allows rapid synthesis of large amounts of this product in nanosized particulate morphology. Morphological and structural features of the prepared products were studied in detail. Chemical analyses indicated a stoichiometry of (NH4)0.5Ni0.75AgPMo12O40·4H2O revealing a Keggin-type framework with substitution of silver and nickel cations in its secondary structure. A home-made set-up was... 

    Chemical composition and antibacterial activity of dracocephalum kotschyi essential oil obtained by microwave extraction and hydrodistillation

    , Article International Journal of Food Properties ; Volume 20 , 2017 , Pages S306-S315 ; 10942912 (ISSN) Moridi Farimani, M ; Mirzania, F ; Sonboli, A ; Matloubi Moghaddam, F ; Sharif University of Technology
    Abstract
    Dracocephalum kotschyi essential oils obtained by hydrodistillation (HD), microwave-assisted hydrodistillation (MAHD), and solvent-free microwave extraction (SFME) were investigated by GC-FID (Gas Chromatography-Flame Ionization Detector) and GC-MS (Gas Chromatography-Mass Spectrometry). The percentage of oxygenated compounds was significantly increased from 62.52% in HD to 76.47% in MAHD, and 84.52% in SFME. Conversely, the monoterpene hydrocarbons were decreased from 30.84% in HD to 13.71% in MAHD, and 5.85% in SFME. The main compound in the essential oil obtained by HD is limonene, which accounted for more than 30% of the oil, while the percentage of this compound was reduced to 9.52% in... 

    Globularity-selected large molecules for a new generation of multication perovskites

    , Article Advanced Materials ; Volume 29, Issue 38 , 2017 ; 09359648 (ISSN) Gholipour, S ; Ali, A. M ; Correa Baena, J. P ; Turren Cruz, S. H ; Tajabadi, F ; Tress, W ; Taghavinia, N ; Grätzel, M ; Abate, A ; De Angelis, F ; Gaggioli, C. A ; Mosconi, E ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    Abstract
    Perovskite solar cells (PSCs) use perovskites with an APbX3 structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high-efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive “black”-phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a “globularity factor”, i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA)... 

    Electrical conductivity of methylimidazolium hexafluorophosphate ionic liquid in the presence of colloidal silver nano particles with different sizes and temperatures

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 39 , 2017 ; 19327447 (ISSN) Taherkhani, F ; Kiani, S ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    Colloidal nanoparticle could be used for recognition location of tumors and cancer tissue. A simulation of molecular dynamic for colloidal silver nanoparticles (Ag NPs) based on density functional theory (DFT) potential parametrization with different sizes in 1-ethyl-3-methylimidazolium hexafluorophosphate [EMim][PF6] ionic liquid was performed. Then, using Green Kubo formalism, diffusion coefficient for Ag NPs in IL and in the gas phase was calculated. We also calculated diffusion coefficients of anions and cations for pure IL and IL in the presence of different sizes of Ag NPs at different temperatures. The findings showed that the diffusion coefficient of anions and cations increases in... 

    Adsorption of pollutant cations from their aqueous solutions on graphitic carbon nitride explored by density functional theory

    , Article Journal of Molecular Liquids ; Volume 260 , 15 June , 2018 , Pages 423-435 ; 01677322 (ISSN) Safdari, F ; Shamkhali, A. N ; Tafazzoli, M ; Parsafar, G ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this study, adsorption of important pollutant cations on the surface of graphitic carbon nitride (g-C3N4) was investigated by density functional theory. The calculations indicated that N6 cavity surrounded by triazine units is the most probable adsorption site on this surface. The structural optimizations also predicted a planar surface for Cr3+, and Ni2+/g-C3N4 systems while the structure of the surface for other systems indicated a considerable distortion with strong dependency on the cation size. Also, g-C3N4 surface exhibited the high adsorption energies for Cr3+, As3+, and Sb3+ ions in the gas phase. However, formation energies of the metal-aquo complexes of these cations indicated... 

    Effect of current density on electrochemical phosphating of stainless steel 316L

    , Article TMS 2009 - 138th Annual Meeting and Exhibition, San Francisco, CA, 15 February 2009 through 19 February 2009 ; Volume 3 , 2009 , Pages 613-620 ; 9780873397407 (ISBN) Oskuie, A. A ; Afshar, A ; Sharif University of Technology
    2009
    Abstract
    In this study two cation coating of calcium and zinc has been developed on stainless steel 316L by electrochemical method. Cathodic current used as an accelerator for phosphating process and the effects of current density on microstructure of the phospahted layer and the time needed for termination of the phosphating process has been evaluated by potential-time, SEM, EDS, etc. Results indicate that higher current densities in electrochemical phosphating will result in heavier phospahted layer with finer crystal size which in turn deteriorates the quality of the layer by its higher porosity. Chemical analysis of the layer reveals that using the electrochemical method for phosphating of... 

    Photovoltaic performance improvement in vacuum-assisted meniscus printed triple-cation mixed-halide perovskite films by surfactant engineering

    , Article ACS Applied Energy Materials ; Volume 2, Issue 9 , 2019 , Pages 6209-6217 ; 25740962 (ISSN) Parvazian, E ; Abdollah Zadeh, A ; Dehghani, M ; Taghavinia, N ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Scalable coating methods have recently emerged as practical alternative deposition techniques to the conventional spin-coating despite their lower yielding power conversion efficiencies (PCEs). The most important barrier acting against the use of scalable deposition methods to get a highly absorbing (>95%) film with controlled morphology in the high crystallinity of perovskite particles is the impossibility of antisolvent dripping during the deposition. Here, we demonstrate the positive role of both the surfactant-engineering and the vacuum-annealing (<100 Pa) process in improving the device performance to overcome this limit. A detailed optimization of the vacuum-assisted meniscus printing... 

    Interactions between Rock/Brine and Oil/Brine interfaces within thin brine film wetting carbonates: A molecular dynamics simulation study

    , Article Energy and Fuels ; Volume 33, Issue 9 , 2019 , Pages 7983-7992 ; 08870624 (ISSN) Koleini, M. M ; Badizad, M. H ; Kargozarfard, Z ; Ayatollahi, S ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    The thin brine film that wets rock surfaces governs the wettability of underground reservoirs. The ionic composition and salinity of this nanosized brine film influence the wetting preference of the rock pore space occupied by hydrocarbons. Despite numerous investigations over the last decades, a unanimous fundamental understanding that concerns the contribution of ions in the original wetting state of the reservoir is lacking and hence the mechanisms responsible for the wettability reversal of the mineral are still unclear. This wettability reversal is the main consequence of ion-Tuned waterflooding. Although the method is widely accepted in practice, there is no universal consensus on the... 

    Photovoltaic parameters and stability study of HTM-free mixed-cation perovskite solar cells by incorporating additives to absorbing layers

    , Article Journal of Materials Science: Materials in Electronics ; Volume 31, Issue 9 , 2020 , Pages 7123-7132 Doosthosseini, F ; Behjat, A ; Karimi Zarchi, A ; Taghavinia, N ; Mirjalili, B. F ; Sharif University of Technology
    Springer  2020
    Abstract
    In this study, quick route-coating is practiced to substitute methyl ammonium (MA) cation with formamidinium (FA) at different ratios. Through optimizing the MA:FA ratio, a maximum power conversion efficiency (PCE) of 8.31% is achieved for holes transporting material-free MA0.8FA0.2PbI3 mixed PSCs with the JSC of 19.02 mA/cm2, VOC of 0.859 V and FF of 50.88%. Then, to improve the performance, stability and carrier transport dynamic, various additives (PVA, PVP, PEG and EC) are incorporated into the perovskite layer. The treatment of perovskites with additives has proved to cause significant changes in the surface roughness, charge accumulation, charge transport, charge transport resistance,... 

    Ion transport through graphene oxide fibers as promising candidate for bblue energy harvesting

    , Article Carbon ; Volume 165 , 2020 , Pages 267-274 Ghanbari, H ; Esfandiar, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Nanostructured graphene based membranes demonstrated excellent capabilities in various applications in nanofiltration and energy conversion due to unique atomically smooth surfaces and adjustable pore size or interlayers spacing at Angstrom scales. There are some reports on the osmotic power generation using physical confinements and electrostatic interactions between ions and GO membranes. However, the results indicated insufficient power densities (˂1 W/m2) can be achieved because of swelling of interlayer spacing of the GO membranes upon exposure to aqueous solutions which results in reducing the influence of confinement on ionic motilities. Here, the GO fibers is presented as one... 

    A Dopant-free hole transporting layer for efficient and stable planar perovskite solar cells

    , Article Physica Status Solidi - Rapid Research Letters ; Volume 14, Issue 7 , 2020 Tavakoli, M. M ; Si, H ; Yadav, P ; Prochowicz, D ; Tavakoli, R ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Herein, a new dopant-free organic material, PV2000, as a stable hole transporting layer (HTL) for the fabrication of stable and efficient perovskite solar cells (PSCs) is introduced. For this purpose, planar PSCs using a triple-A cation perovskite composition are fabricated and the commonly used 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD) HTL is replaced by dopant-free PV2000 polymer. The characterization results disclose that the PV2000 has a great thermal stability, good hole mobility, and suitable band alignment that matches well with the valence band of triple-A cation perovskite. After proper optimization of PV2000 film thickness, a planar PSC...