Loading...
Search for: power-law-behaviour
0.005 seconds

    The Effect of Clustering in Power-Law Behavior in Financial Systems

    , M.Sc. Thesis Sharif University of Technology Gomrokizadeh, Iman (Author) ; Moghimi Araghi, Saman (Supervisor)
    Abstract
    Many different scaling laws are observed in financial data. As an example, the distribution of Log-Return of stock prices obey power law, provided relatively short time intervals are considered. In standard statistical physics, scaling laws are observed in critical phenomena, where the system has long-ranged correlations. Within the same context, to arrive at criticality one has to tune some external parameters, such as the temperature. Yet, there are a group of systems that tend towards criticality through their dynamics. Such systems are called self-organised critical systems.There have been proposed many different mechanisms and models to address why power laws are observed in financial... 

    Critical Behavior of Neuronal Systems: an Information Theory Viewpoint

    , M.Sc. Thesis Sharif University of Technology Soltani, Miaad (Author) ; Moghimi, Saman (Supervisor)
    Abstract
    Experiments conducted in recent two decades indicated critical behavior in neural activity at different scales. Theoretically occurrences of these critical and power-law behavior can significantly facilitate brain activities correspondent to computation and memory tasks, but attaining the critical point essentially demands externally fine-tuning which has not been established yet. This fine-tuning often lies with placing system at transition point. Recent studies of group showed that a transition from synchronous to asynchronous phase could be achievable by a change in external parameters. At the very transition point, neuronal avalanches statistically demonstrate a power-law behavior which... 

    Critical behavior at the onset of synchronization in a neuronal model

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 587 , 2022 ; 03784371 (ISSN) Safaeesirat, A ; Moghimi Araghi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    It has been observed experimentally that the neural tissues generate highly variable and scale-free distributed outbursts of activity both in vivo and in vitro. Understanding whether these heterogeneous patterns of activity come from operation of the brain at the edge of a phase transition is an interesting possibility. Therefore, constructing a simple model that exhibits such behavior is of great interest. Additionally, the presence of both critical behavior and oscillatory patterns in brain dynamics is a very interesting phenomenon: Oscillatory patterns define a temporal scale, while criticality imposes scale-free characteristics. In this paper, we consider a model for a neuronal...