Loading...
Search for: power-system-model
0.016 seconds

    Promoting the optimal maintenance schedule of generating facilities in open systems

    , Article International Conference on Power System Technology, PowerCon 2002, 13 October 2002 through 17 October 2002 ; Volume 1 , 2002 , Pages 641-645 ; 0780374592 (ISBN); 9780780374591 (ISBN) Tabari, N. M ; Ranjbar, A. M ; Sadati, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2002
    Abstract
    This paper presents a dynamic programming methodology for finding the optimum preventive maintenance schedule of generating units of a GENCO in open power systems. The objective function for the GENCO is to sell electricity as much as possible, according to the market price forecast. Various constraints such as generation capacity, duration of maintenance and maintenance crew are taken into account. In a case study, introducing a GENCO with six generating units, and implementing dynamic programming, we obtain the optimal maintenance schedule over the planning period. © 2002 IEEE  

    Modeling and evaluation with object stochastic activity networks

    , Article Proceedings - First International Conference on the Quantitave Evaluation of Systems, QEST 2004, Enschede, 27 September 2004 through 30 September 2004 ; 2004 , Pages 326-327 ; 0769521851 (ISBN) Abdollahi Azgomi, M ; Movaghar, A ; Sharif University of Technology
    2004
    Abstract
    Stochastic activity networks (SANs) are a stochastic generalization of Petri nets. SAN models have been used for performance, dependability and performability evaluation and are supported by several powerful modeling tools. We have recently introduced object stochastic activity networks (OSANs) to overcome some restrictions of these models. OSANs integrate the concepts of object-orientation into SAN models. Elements of OSANs and their submodels are defined as classes. In this paper, we briefly introduce OSANs and SANBuilder tool for modeling and evaluation with these models. © 2004 IEEE  

    Accurate fault location algorithm for series compensated transmission lines

    , Article IEEE Transactions on Power Delivery, Piscataway, NJ, United States ; Volume 15, Issue 3 , 2000 , Pages 1027-1033 ; 08858977 (ISSN) Sadeh, J ; Hadjsaid, N ; Ranjbar, A. M ; Feuillet, R ; Sharif University of Technology
    IEEE  2000
    Abstract
    In this paper, an accurate fault location algorithm for series compensated power transmission lines is presented. Distributed time domain model is used for modeling of the transmission lines. The algorithm makes use of two subroutines for estimation of the fault distance - one for faults behind the series capacitors and another one for faults in front of the series capacitors. Then a special procedure to select the correct solution is utilized. Samples of voltages and currents at both ends of the line are taken synchronously and used to calculate the location of the fault. The proposed algorithm is independent of fault resistance and does not require any knowledge of source impedance. The... 

    Low-order dynamic equivalent estimation of power systems using data of phasor measurement units

    , Article International Journal of Electrical Power and Energy Systems ; Volume 74 , 2016 , Pages 134-141 ; 01420615 (ISSN) Shiroei, M ; Mohammadi Ivatloo, B ; Parniani, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    This paper utilizes data measured by phasor measurement units (PMUs) to extract a low-order dynamic equivalent model for power system stability studies. The estimated model is a 2-order model for synchronous machines. This model has the advantage of simplicity of classical model and considerably reduces the oversimplifying error of classical model. This method offers an alternative approach to analytical model reduction techniques based on the detailed system models. The proposed method uses the synchronized bus voltage and current phasors measured by PMUs. Using post disturbance data, electrical and mechanical parameters of the equivalent generator are estimated sequentially. Furthermore, a... 

    Sensitivity-based generators redispatch to improve electromechanical mode damping considering transmission lines resistance

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 491-496 ; 9781728115085 (ISBN) Setareh, M ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper proposes a novel formula to calculate sensitivities of electromechanical modes to generators active power changes. Quadratic eigenvalue problem is applied to construct the framework of the proposed formula. Sensitivity factors are calculated using power system model parameters and power flow variables, which can be either obtained via state estimation or measured directly by phasor measurement units. The 39-bus New England power system is used to verify performance of the proposed method