Loading...
Search for: prandtl-ishlinskii-model
0.005 seconds

    Position control of shape memory alloy actuator based on the generalized Prandtl-Ishlinskii inverse model

    , Article Mechatronics ; Volume 22, Issue 7 , 2012 , Pages 945-957 ; 09574158 (ISSN) Sayyaadi, H ; Zakerzadeh, M. R ; Sharif University of Technology
    2012
    Abstract
    Hysteresis and significant nonlinearities in the behavior of Shape Memory Alloy (SMA) actuators encumber effective utilization of these actuator. Due to these effects, the position control of SMA actuators has been a great challenge in recent years. Literature review of the research conducted in this area shows that using the inverse of the phenomenological hysteresis models can compensate the hysteresis of these actuators effectively. But, inverting some of these models, such as Preisach model, is numerically a complex task. However, the generalized Prandtl-Ishlinskii model is analytically invertible, and therefore can be implemented conveniently as a feedforward controller for compensating... 

    Precise position control of shape memory alloy actuator using inverse hysteresis model and model reference adaptive control system

    , Article Mechatronics ; Volume 23, Issue 8 , December , 2013 , Pages 1150-1162 ; 09574158 (ISSN) Zakerzadeh, M. R ; Sayyaadi, H ; Sharif University of Technology
    2013
    Abstract
    Position control of Shape Memory Alloy (SMA) actuators has been a challenging topic during the last years due to their nonlinearities in the governing physical equations as well as their hysteresis behaviors. Using the inverse of phenomenological hysteresis model in order to compensate the input-output hysteresis behavior of these actuators shows the effectiveness of this approach. In this paper, in order to control the tip deflection of a large deformation flexible beam actuated by an SMA actuator wire, a feedforward-feedback controller is proposed. The feedforward part of the proposed control system, maps the beam deflection into SMA temperature, is based on the inverse of the generalized... 

    Experimental comparison of some phenomenological hysteresis models in characterizing hysteresis behavior of shape memory alloy actuators

    , Article Journal of Intelligent Material Systems and Structures ; Volume 23, Issue 12 , 2012 , Pages 1287-1309 ; 1045389X (ISSN) Zakerzadeh, M. R ; Sayyaadi, H ; Sharif University of Technology
    SAGE  2012
    Abstract
    Among the phenomenological hysteresis models, the Preisach model, Krasnosel'skii-Pokrovskii model, and Prandtl-Ishlinskii model have found extensive applications for modeling hysteresis in shape memory alloys and other smart actuators. Since the mathematical complexity of the identification and inversion problem depends directly on the type of phenomenological hysteresis modeling method, choosing a proper phenomenological model among the mentioned models for modeling the hysteretic behavior of shape memory alloy actuators is a task of crucial importance. Moreover, the accuracy of the hysteresis modeling method in characterizing shape memory alloy hysteretic behavior consequently affects the... 

    Identification of inelastic shear frames using the prandtl-ishlinskii model

    , Article Scientia Iranica ; Volume 16, Issue 1 A , 2009 , Pages 43-49 ; 10263098 (ISSN) Farrokh, M ; Joghataie, A ; Sharif University of Technology
    2009
    Abstract
    In this paper, a new method is proposed for identification of inelastic shear frame structures with hesteresis, using data collected on their dynamic response. It uses the. Prandtl-Ishlinskii rate independent model for hysteresis, which was originally used in the field of plasticity and ferromagnetism. The proposed identification method is capable, of identifying the. mass, damping and restoring force of a frame, structure, which can be. used in forming the. equations of motion of the.frame. By solving the equations of motion, the. dynamic response is predicted. The method is based on the.combined use. of Quadratic Programming (QP) and Genetic Algorithms (GA). First, assuming a set of... 

    Adaptive sliding mode control of a piezo-actuated bilateral teleoperated micromanipulation system

    , Article Precision Engineering ; Volume 35, Issue 2 , 2011 , Pages 309-317 ; 01416359 (ISSN) Motamedi, M ; Ahmadian, M. T ; Vossoughi, G ; Rezaei, S. M ; Zareinejad, M ; Sharif University of Technology
    Abstract
    Piezoelectric actuators are widely used in micro manipulation applications. However, hysteresis nonlinearity limits the accuracy of these actuators. This paper presents a novel approach for utilizing a piezoelectric nano-stage as the slave manipulator of a teleoperation system based on a sliding mode controller. The Prandtl-Ishlinskii (PI) model is used to model actuator hysteresis in feedforward scheme to cancel out this nonlinearity. The presented approach requires full state and force measurements at both the master and slave sides. Such a system is costly and also difficult to implement. Therefore, sliding mode unknown input observer (UIO) is proposed for full state and force...