Loading...
Search for: precipitation--chemistry
0.011 seconds

    Treatment of oilfield produced water by dissolved air precipitation/solvent sublation

    , Article Journal of Petroleum Science and Engineering ; Volume 80, Issue 1 , 2011 , Pages 26-31 ; 09204105 (ISSN) Bayati, F ; Shayegan, J ; Noorjahan, A ; Sharif University of Technology
    Abstract
    Dissolved air precipitation/solvent sublation (DAP/SS) was used for treatment of simulated and real oilfield produced water to generate very fine bubbles which are necessary for effective separation. In this method micro bubbles produced by saturation of air in a pressurized packed column were released in an atmospheric column leading the bubbles to raise resulting trapped contaminants in the Gibbs layer around them to be removed by a layer of immiscible solvent at the top of column. The method was conducted to solutions including Benzene, Toluene and Chlorobenzene (ClB) as part of BTEX contaminants in produced water, mixture of them as simulated produced water and real oilfield produced... 

    A new geochemical reactive transport model for sandstone acidizing

    , Article Computers and Geosciences ; Volume 166 , 2022 ; 00983004 (ISSN) Khojastehmehr, M ; Bazargan, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Understanding the chemistry of sandstone acidizing is important in designing an effective treatment for subsurface rock formations. The complex chemistry of sandstone systems leads to the precipitation of minerals that contribute to formation damage. Thus, monitoring the concentration and location of precipitates is necessary. In this work, a continuum-scale sequential implicit LEA/PLEA reactive transport model is developed and programmed through coupling OpenFOAM and Reaktoro to improve the model prediction. The proposed LEA/PLEA models are compared for core acidizing simulations at relatively high and low Damköhler numbers. We found that the common assumption of kinetically-controlled flow... 

    Controlled microwave-assisted synthesis of ZnFe 2 O 4 nanoparticles and their catalytic activity for O-acylation of alcohol and phenol in acetic anhydride

    , Article Scientia Iranica ; Volume 19, Issue 6 , December , 2012 , Pages 1597-1600 ; 10263098 (ISSN) Matloubi Moghaddam, F ; Doulabi, M ; Saeidian, H ; Sharif University of Technology
    2012
    Abstract
    ZnFe2O4 nanoparticles have been successfully prepared through a controlled microwave-assisted co-precipitation. X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) were used for the structural, morphological and magnetic investigation of the product. SEM micrographs of ZnFe2O4 nanopowder also reveal that nanoparticles have spherical shape. Average particle size was obtained as 12 nm from XRD. Catalytic activity of ZnFe2O4 nanopowder for O-acylation of alcohol and phenol has been investigated. A trace amount of ZnFe2O4 has been effectively used as a nanocatalyst for the acylation of alcohol and... 

    Experimental investigation and thermodynamic modeling of asphaltene precipitation

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1384-1390 ; 10263098 (ISSN) Jafari Behbahani, T ; Ghotbi, C ; Taghikhani, V ; Shahrabadi, A ; Sharif University of Technology
    2011
    Abstract
    Asphaltene precipitation may occur during pressure depletion or gas injection processes in a reservoir. This phenomenon is an important problem during oil production, because it can result in formation damage and the plugging of wellbore and surface facilities. In this work, the precipitation of asphaltenes in an Iranian crude oil, under different pressures, is measured, using an experimental set up based on high-pressure isothermal expansion and also atmospheric titration. For the particular oil investigated, compositional data, precipitation phase diagrams, and bubble point and onset pressures are reported. Also, in this work, the Perturbed Chain form of the Statistical Associating Fluid... 

    Experimental investigation of the asphaltene deposition process during different production schemes

    , Article Oil and Gas Science and Technology ; Volume 66, Issue 3 , 2011 , Pages 507-519 ; 12944475 (ISSN) Bagheri, M. B ; Kharrat, R ; Ghotby, C ; Sharif University of Technology
    2011
    Abstract
    Experimental Investigation of the Asphaltene Deposition Process during Different Production Schemes - This paper presents the results of asphaltene precipitation and deposition during lean gas injection, CO2 injection and natural depletion in reservoir conditions. In addition, the effect of variations in operating pressure, injection gas concentration and production rate on asphaltene precipitation and deposition were investigated. The severity of asphaltene deposition was found to be more pronounced in lean gas injection in comparison with CO2 injection and natural depletion. Increasing the flow rate in natural depletion xperiments showed a considerable increase in asphaltene deposition,... 

    Geochemical and hydrodynamic modeling of permeability impairment due to composite scale formation in porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 176 , 2019 , Pages 1071-1081 ; 09204105 (ISSN) Shabani, A ; Kalantariasl, A ; Parvazdavani, M ; Abbasi, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Injectivity decline due to mineral scale deposition in near wellbore region of water injection wells is one of the main challenging issues and have been widely reported in the literature. One of the main mechanisms of injectivity loss is incompatibility between injected and formation waters that may result in inorganic scale precipitation and subsequent deposition in porous media. Reliable reactive flow models to predict type and amount of scale along with permeability decline estimation allow planning and risk management of water flood projects. In this paper, we present a coupled geochemical and hydrodynamic model to simulate the scale precipitation and deposition of mineral scales in... 

    A reactive transport approach for modeling scale formation and deposition in water injection wells

    , Article Journal of Petroleum Science and Engineering ; Volume 190 , 2020 Shabani, A ; Sisakhti, H ; Sheikhi, S ; Barzegar, F ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Petroleum industry is moving toward enhancing oil recovery methods, especially water-based methods, including low salinity and smart water flooding which water with an optimized composition is injected into the reservoir for improving oil recovery. Injection of water into the target formation is also a common operation in geothermal energy production. As the water is being injected into the reservoir, pressure and temperature change along the well column and cause scale formation. Mineral scale precipitation and deposition is a common problem for water injection wells which reduces the effective radius of the wellbore and affects the injection efficiency. In this paper, modeling scale... 

    Detailed analysis of the brine-rock interactions during low salinity water injection by a coupled geochemical-transport model

    , Article Chemical Geology ; Volume 537 , 2020 Shabani, A ; Zivar, D ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Enhanced Oil Recovery (EOR) methods have been widely used around the world to improve oil production from petroleum reservoirs. Recently, the injection of the low salinity/smart water has gained popularity among the EOR methods. Different mechanisms are believed to exist during low salinity/smart water injection, including dissolution, precipitation, and ion exchange at the rock surface. In this study, a coupled geochemical-transport model is presented for the detailed analysis and investigation of the interactions between brine, sandstone and carbonate rocks. The proposed model presents the coupling of a geochemical software (PHREEQC) and a species transport model. This coupled method makes... 

    Influence of lakebed sediment deposit on the interaction of hypersaline lake and groundwater: A simplified case of lake Urmia, Iran

    , Article Journal of Hydrology ; Volume 588 , 2020 Sheibani, S ; Ataie Ashtiani, B ; Safaie, A ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Lake Urmia, which was once the second-largest saline lake in the world, has been shrinking dramatically. Moreover, Lake Urmia has become supersaturated with total salinity averaging more than 350 g/l. Salt precipitation and dissolved materials brought by inflowing rivers have formed a layer of sediment with low hydraulic conductivity on the lakebed. Considering the flat bathymetry of Lake Urmia, we conducted a series of numerical simulation scenarios to study the groundwater flow pattern in the vicinity of the hypersaline Lake Urmia using COMSOL Multiphysics®. In the first step, we performed the simulations in steady-state conditions. Secondly, we simulated the lake level fall in 10 years at... 

    Pore-scale insights into sludge formation damage during acid stimulation and its underlying mechanisms

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Mirkhoshhal, S. M ; Mahani, H ; Ayatollahi, S ; Mohammadzadeh Shirazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Acid-oil emulsion and sludge formation are known as two major formation damage mechanisms and the reason for failure of some acid treatments. The published studies in this area focus primarily on core- to well/reservoir-scale and it is fairly unclear how acid-oil interaction at the pore-scale leads to the formation damage observed at the macro- or core-scale. In this paper, dynamic, micro-scale experiments were designed and executed to investigate the acid-induced formation damage using microfluidic approach. In addition, a series of so-called static (microscope) tests were performed in which acid-crude oil compatibility tests were conducted on a glass slide followed by microscopic... 

    Construction of porous calcite structure using microbially induced calcite precipitation

    , Article Journal of Petroleum Science and Engineering ; Volume 217 , 2022 ; 09204105 (ISSN) Alidoustsalimi, N ; Bazargan, M ; Ghobadi Nejad, Z ; Yaghmaei, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Sporosarcina pasteurii is a well-known ureolytic bacteria that promotes the microbially induced calcite precipitation (MICP) process for several environmental and engineering purposes. In our work, for the first time, MICP has been implemented to form pure, porous calcite structures. The maximum urease activity of S. pasteurii was 1.91 mM urea hydrolyzed min−1 at the late-exponentially phase. A reactor has been designed to achieve semi-continuous treatments, and reagents were introduced to it by a peristaltic pump. A new alternating injection pattern was adopted to obtain well-distributed precipitation. SEM images of treated structures indicated the shapes of CaCO3 crystals at a microscale... 

    Removal of toxic heavy metal ions from waste water by functionalized magnetic core-zeolitic shell nanocomposites as adsorbents

    , Article Environmental Science and Pollution Research ; Volume 20, Issue 6 , 2013 , Pages 3900-3909 ; 09441344 (ISSN) Padervand, M ; Gholami, M. R ; Sharif University of Technology
    2013
    Abstract
    Functionalized magnetic core-zeolitic shell nanocomposites were prepared via hydrothermal and precipitation methods. The products were characterized by vibrating sample magnetometer, X-ray powder diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption-desorption isotherms, and transmission electron microscopy analysis. The growth of mordenite nanocrystals on the outer surface of silica-coated magnetic nanoparticles at the presence of organic templates was well approved. The removal performance and the selectivity of mixed metal ions (Pb2+ and Cd2+) in aqueous solution were investigated via the sorption process. The batch method was employed to study the sorption kinetic,... 

    Investigating the effects of rock and fluid properties in Iranian carbonate matrix acidizing during pre-flush stage

    , Article Journal of Petroleum Science and Engineering ; Volume 166 , 2018 , Pages 121-130 ; 09204105 (ISSN) Karimi, M ; Shirazi, M. M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Acidizing of carbonate oil-wet rocks saturated with oil and saline formation water is subjected failure in some cases due to acid-induced damage such as sludge and emulsion formations. This condition may also lead to mineral precipitation, oil film barrier between acid and rock and diversion chemical malfunctions. Therefore, pre-flush process has been proposed as one of the most efficient stage for oil-wells matrix acidizing to reduce these challenges significantly. Besides, the pre-flush stage would result in more clean rock as the reservoir fluids are pushed back from the near wellbore regions, restoring rock wettability to more water wet state, preventing direct acid-oil contact and... 

    Effective degradation of Reactive Red 195 via heterogeneous electro-Fenton treatment: theoretical study and optimization

    , Article International Journal of Environmental Science and Technology ; Volume 16, Issue 10 , 2019 , Pages 6329-6346 ; 17351472 (ISSN) Nazari, P ; Rahman Setayesh, S ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2019
    Abstract
    Abstract: The magnetite (Fe3O4) nanoparticles were synthesized and supported on the reduced graphene oxide. The characterization of the catalyst was performed by FT-IR, VSM, SEM, XRD, and BET techniques. The obtained results indicated that the in situ synthesis of Fe3O4 using coprecipitation method caused the homogenous formation of magnetite nanoparticles on the surface of reduced graphene oxide (average particle size ~ 71.032 nm) with high stability and catalytic activity toward electro-Fenton removal of Reactive Red 195. The effect of various factors (current intensity, initial pollutant concentration, catalyst weight, and pH) was evaluated by response surface methodology using central... 

    A new multiphase and dynamic asphaltene deposition tool (MAD-ADEPT) to predict the deposition of asphaltene particles on tubing wall

    , Article Journal of Petroleum Science and Engineering ; Volume 195 , 2020 Naseri, S ; Jamshidi, S ; Taghikhani, V ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    As expounded, the precipitation and deposition of asphaltene particles in pipelines has been proved to be the most challenging flow assurance problem due to its unknown and complex behaviors. In this work, a new multicomponent, multiphase and dynamic tool was developed to model the aggregation and deposition of asphaltene particles in a bulk medium. The multiphase and dynamic asphaltene deposition tool, shortened as MAD-ADEPT is, in fact, a modified version of the previously developed ADEPT. The new tool was developed to make the asphaltene deposition and aggregation concepts in oil production wells more predictable. To tackle the complexity of the asphaltene problem, a bespoke algorithm was... 

    Mapping the spatiotemporal variability of salinity in the hypersaline Lake Urmia using Sentinel-2 and Landsat-8 imagery

    , Article Journal of Hydrology ; Volume 595 , 2021 ; 00221694 (ISSN) Bayati, M ; Danesh Yazdi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The spatiotemporal dynamic of salinity concentration (SC) in saline lakes is strongly dependent on the rate of water flow into the lake, water circulation, wind speed, evaporation rate, and the phenomenon of salt precipitation and dissolution. Although in-situ observations most reliably quantify water quality metrics, the spatiotemporal distribution of such data are typically limited and cannot be readily extrapolated for either long-term projections or extensive areas. Alternatively, remotely sensed imagery has facilitated less expensive and a stronger ability to estimate water quality over a wide range of spatiotemporal resolutions. This study introduces an adaptive learning model that... 

    Asphaltene destabilization in the presence of an aqueous phase: The effects of salinity, ion type, and contact time

    , Article Journal of Petroleum Science and Engineering ; Volume 208 , 2022 ; 09204105 (ISSN) Mokhtari, R ; Hosseini, A ; Fatemi, M ; Andersen, S. I ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    One of the possible fluid-fluid interactions during water-flooding in oil reservoirs, that is still debated, is the effect of injected brine salinity on asphaltene destabilization. If asphaltene precipitation is induced by salinity changes in the oil reservoirs and surface facilities, this could have a massive impact on the economy of a low salinity water-flooding project. Therefore, this study aims to investigate the effect of brine salinity on the amount of asphaltene precipitation and the governing destabilization mechanisms. Direct asphaltene precipitation measurements, along with the analyses of optical microscopy images and ion chromatography (IC), indicate that the asphaltene...