Loading...
Search for: precipitation-kinetics
0.005 seconds

    A newmodel for permeability reduction rate due to calciumsulfate precipitation in sandstone cores

    , Article Journal of Porous Media ; Volume 13, Issue 10 , 2010 , Pages 911-922 ; 1091028X (ISSN) Tahmasebi, H. A ; Soltanieh, M ; Kharrat, R ; Sharif University of Technology
    2010
    Abstract
    In this work, a reliable dimensionless correlation is proposed for prediction of permeability reduction rate in porous media, which is verified by experimental data obtained in this work in glass bead and sand pack as well as the core data from the literature. Although this correlation is based on the data which were obtained in our work in glass bead and sand-packed media at low pressure, it shows considerable flexibility to match with the extracted data for sandstone cores at high pressure, various flow rates, different temperatures and concentrations of calcium, and sulfate ions in brine solutions. In addition, a novel relationship for predicting the rate of precipitation of CaSO4 in... 

    Dimensionless correlation for the prediction of permeability reduction rate due to calcium sulphate scale deposition in carbonate grain packed column

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 41, Issue 3 , 2010 , Pages 268-278 ; 18761070 (ISSN) Tahmasebi, H. A ; Kharrat, R ; Soltanieh, M ; Sharif University of Technology
    Abstract
    In this work, an experimental and theoretical study has been conducted to investigate the permeability reduction due to CaSO4 scale deposition in packed column porous media. Permeability reduction by calcium sulphate deposition follows a systematic trend considering various important parameters that are affected in this complex process. Hence, a novel dimensionless model has been proposed for the prediction of permeability reduction rate with high accuracy. The developed model is based on the data obtained from glass bead and carbonate grain packed column at low pressure. The proposed model was validated with Berea sandstone cores data at high pressure (100-20,678 kPa), various flow rates...