Loading...
Search for: predictor-corrector-methods
0.006 seconds

    Polynomial time second order mehrotra-type predictor-corrector algorithms

    , Article Applied Mathematics and Computation ; Volume 183, Issue 1 , 2006 , Pages 646-658 ; 00963003 (ISSN) Salahi, M ; Mahdavi Amiri, N ; Sharif University of Technology
    2006
    Abstract
    Salahi et al. [M. Salahi, J. Peng, T. Terlaky, On Mehrtora type predictor-corrector algorithms, Technical Report 2005/4, Advanced Optimization Lab, Department of Computing and Software, McMaster University, http://www.cas.mcmaster.ca/~oplab/publication, SIAM Journal on Optimization, submitted for publication] give a numerical example showing that Mehrotra's original predictor-corrector algorithm, which is the basis of interior point methods software packages, may be very inefficient in practice. This motivated Salahi et al. to come up with a safeguarded algorithm that enjoys a polynomial iteration complexity and is efficient in practice. Here we discuss a variation of Mehrotra's second order... 

    On the predicted errors of atmospheric guidance laws

    , Article Aircraft Engineering and Aerospace Technology ; Volume 80, Issue 3 , 2008 , Pages 262-273 ; 00022667 (ISSN) Jalali Naini, S. H ; Pourtakdoust, S. H ; Sharif University of Technology
    2008
    Abstract
    Purpose - The purpose of this paper is to develop a novel solution for the predicted error and introduces a systematic method to develop optimal and explicit guidance strategies for different missions. Design/methodology/approach - The predicted error is derived from its basic definition through analytic]al dynamics. The relations are developed for two classes of systems. First, for systems in which the acceleration commands are truncated at a specified time. Second, for systems in which the corrective maneuvers are cut off at a specified time. The predicted error differential equation is obtained in a way that allows for derivation of several optimal and explicit guidance schemes. Findings... 

    Analytical investigation of boundary layer growth and swirl intensity decay rate in a pipe

    , Article Archive of Applied Mechanics ; Volume 81, Issue 4 , 2011 , Pages 489-501 ; 09391533 (ISSN) Maddahian, R ; Kebriaee, A ; Farhanieh, B ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    In this research, the developing turbulent swirling flow in the entrance region of a pipe is investigated analytically by using the boundary layer integral method. The governing equations are integrated through the boundary layer and obtained differential equations are solved with forth-order Adams predictor-corrector method. The general tangential velocity is applied at the inlet region to consider both free and forced vortex velocity profiles. The comparison between present model and available experimental data demonstrates the capability of the model in predicting boundary layer parameters (e.g. boundary layer growth, shear rate and swirl intensity decay rate). Analytical results showed... 

    The pulsatile flow of Oldroyd-B fluid in a multi-stenosis artery with a time-dependent wall

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 4 , 2010 , Pages 915-923 ; 09544062 (ISSN) Javadzadegan, A ; Fakhimghanbarzadeh, B ; Sharif University of Technology
    Abstract
    In this study, the fundamental problem of unsteady blood flow in a tube with multi-stenosis is studied. An appropriate shape of the time-dependent multi-stenosis which is overlapping in the realm of formation of arterial narrowing is constructed mathematically. Blood is considered as a viscoelastic fluid characterized by the Oldroyd-B model. For the numerical solution of the problem, which is described by a coupled, non-linear system of partial differential equations (PDEs), with appropriate boundary conditions, the finite difference scheme is adopted. The solution is obtained by the development of an efficient numerical methodology based on the predictor-corrector method. The effects of... 

    Turbulent flow in converging nozzles, part one: Boundary layer solution

    , Article Applied Mathematics and Mechanics (English Edition) ; Volume 32, Issue 5 , 2011 , Pages 645-662 ; 02534827 (ISSN) Maddahian, R ; Farhanieh, B ; Firoozabadi, B ; Sharif University of Technology
    2011
    Abstract
    The boundary layer integral method is used to investigate the development of the turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system are simplified with the boundary layer assumptions and integrated through the boundary layer. The resulting sets of differential equations are then solved by the fourth-order Adams predictor-corrector method. The free vortex and uniform velocity profiles are applied for the tangential and axial velocities at the inlet region, respectively. Due to the lack of experimental data for swirling flows in converging nozzles, the developed model is validated against the numerical simulations. The...