Loading...
Search for: pressure-fluctuation
0.005 seconds

    Experimental Investigation of Bubble Growth on Fluidized Bed Distributor

    , M.Sc. Thesis Sharif University of Technology Es-hagh Nimvari, Mohsen (Author) ; Rashtchian, Davood (Supervisor) ; Zarghami, Reza (Supervisor)
    Abstract
    In this study formation of a single bubble on fluidized bed distributor is investigated. Digital image processing and pressure sensors are used to analyze bubble characteristics. Effects of density and the size of particles on bubble diameter, formation time, separation and passing velocity was studied in different flow rates of nozzle. Bubble diameter when is separated from nozzle was greater for lower density particles which have the same size. The ratio of diameter formation was approximately equal to inverse of densities ratio. Bubble formation time is decreased by increasing the flow rate of nozzle and the formation time is approached to a specified value. In addition, it was observed... 

    Experimental investigation of bubble behavior in gas-solid fluidized bed

    , Article Advanced Powder Technology ; Volume 31, Issue 7 , 2020 , Pages 2680-2688 Nimvari, M. I ; Zarghami, R ; Rashtchian, D ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this work, to investigate the source of pressure fluctuations, behavior of a single bubble in a two-dimensional gas–solid fluidized bed was studied. Pressure sensors located at different heights of the bed measured presure fluctuations, and simultaneously a high speed camera was used to pursue all steps from formation to eruption of bubbles. Two types of particles were applied with different sizes and densities. Experiments showed that the maximum amplitude of formation was independent of the bubble diameter. But, it depended on density of particles, velocity of injection and the distance from bed surface. When injection stopped, there was a minimum in pressure profile related to the... 

    Experimental Study of Two-Phase Slug Flow in Rectangular Tunnls with Adverse Slope

    , M.Sc. Thesis Sharif University of Technology Karimpour, Farid (Author) ; Borghei, Mahmoud (Supervisor)
    Abstract
    Slug Flow is one of the most important schemes of two-phase air/water flow, which is quite complex and quite different to a single-phase flow. Also one of the common water conveyance systems is a rectangular tunnel which may have adverse slope at some parts of the tunnel. In this study the hydraulic of slug flow in rectangular tunnels with variable slope from horizontal to adverse have been considered using experimental setup. About 150 tests were carried out for different air/water discharge ratios and adverse slopes, and dynamic pressure fluctuations together with the slug period were measured. It was observed that the pressure fluctuations increase as the air to water ratio increases and... 

    Numerical Investigation of Vortex Shedding Control Behind a Cylinder with Swinging Thin Plates

    , M.Sc. Thesis Sharif University of Technology Bagherzadeh Chehreh, Babak (Author) ; Javadi, Khodayar (Supervisor) ; Tayyebi Rahni, Mohammad (Co-Advisor)
    Abstract
    Von-Karman vortex shedding is a transient aerodynamic instability which occurs in laminar flows over a bluff body in a certain condition. When this phenomenon occurs, vortices take form on upper and lower parts of the bluff body and begin to shed into an oscillatory manner affecting a significant part of the flow domain. This research focuses on Karman vortex shedding control by using two thin oscillating splitter plates. Length ratio of plates to cylinder diameter is 1 (L⁄D=1) and plates are attached at ±55 degrees (trigonometric angle). Plates are forced to oscillate at different ratios of natural vortex shedding frequencies (0.75, 1, 1.25, 1.5 and 2) for diffenet amplitudes. Simulations... 

    Experimental Study of Pressure Fluctuation in Two Phase Slug Flow In a Tunnel with Rectangular Cross Section with an Expansion Transition and Horizontal Slope

    , M.Sc. Thesis Sharif University of Technology Jalilvand, Ehsan (Author) ; Borghie, Mahmood (Supervisor)
    Abstract
    Air enterance in to flowing water is something that is commonly seen in the water conveyance systems. The mixture of Air and water that flow together create a kind of flow that is called two phase flow. This kind of flow is often seen in culverts and water conveyance systems. There are different flow patterns in two phase flow. Considering pressure fluctuation, pressure drop and pressure recovery, slug flow pattern is the most complicated pattern among all.
    Sometimes a singularity is used in a tunnel; one of the singularities that are frequently used in water conveyance system is expansion transition. In this study an experimental setup is used to model two phase slug flow, which passes... 

    Investigations on Stability of Premixed Flames in Turbine Engines

    , Ph.D. Dissertation Sharif University of Technology Riazi, Rouzbeh (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    This thesis is a complementary experimental and theoretical investigation on stability of premixed flames and a study of combustion instability and combustion dynamics in a swirl-stabilized combustor, aiming to understand the fundamental mechanisms responsible for combustion oscillations in gas turbine combustors. Theoretical investigations on acoustic modeling of a simple combustor and a study on kinematic response of premixed flames to flow perturbations have been discussed in the first part of this work. In another part of thesis, experimental studies on the response of premixed flames to acoustic perturbations have been performed. In addition, experimental investigations on combustion... 

    Pressure variation due to sudden rise of water head at water inlets

    , Article 31st IAHR Congress 2005: Water Engineering for the Future, Choices and Challenges, 11 September 2005 through 16 September 2005 ; 2005 , Pages 2797-2806 ; 8987898245 (ISBN); 9788987898247 (ISBN) Kabiri-Samani, A ; Borghei, S.M ; Saidi, M. H ; Byong-Ho J ; Sang I. L ; Won S. I ; Gye-Woon C ; Sharif University of Technology
    Korea Water Resources Association  2005
    Abstract
    An analytical/numerical model based on the assumption of rigid incompressible water column and compressible air bubble, is derived to simulate the pressure fluctuations, void fraction, air/water flow rate, water velocity in a closed conduit and water depth at upper reservoir due to formation of unstable slug flow. It is a comprehensive model which can generate different hydraulic situations of instability in a closed conduit based on hydraulic approach. The boundary conditions are the system of algebraic or/and simple differential equations. The steady solution of the governing differential equations is generally performed as the initial data. The frequency of pressure fluctuation and... 

    Transport of Water/Foamy Oil Emulsion in Poruos Media

    , M.Sc. Thesis Sharif University of Technology Moaref, Sepideh (Author) ; Massihi, Mohsen (Supervisor) ; Ayatollahi, Shahaboddin (Supervisor)
    Abstract
    Water in oil emulsion usually forms during natural water encroachment or enhanced oil recovery processes due to the reaction between asphaltenic and naphthenic acid part of oil with brine in some heavy oil reservoirs. This results in major production challenges because of high w/o emulsion viscosity which leads to significant pressure drops. Therefore, it is essential to investigate the dominant mechanisms of w/o emulsion flow in porous media to overcome the production challenges. In the present study, w/o emulsion behavior is investigated through both static and dynamic tests. The w/o emulsion was prepared through mixing of a crude with brine using magnet stirrer. Emulsion stability... 

    An experimental study on combustion dynamics and NOx emission of a swirl stabilized combustor with secondary fuel injection

    , Article Journal of Thermal Science and Technology ; 2010 , Pages 266-281 ; 18805566 (ISSN) Riaz, R ; Farshchi, M ; Shimura, M ; Tanahashi, M ; Miyauchi, T ; Sharif University of Technology
    2010
    Abstract
    To investigate the effects of flow rate, diameter and offset of secondary fuel injection on combustor noise level, pressure fluctuation and NOx emission, four types of injectors were examined in a swirl-stabilized combustor for overall equivalence ratio (Ø) of 0.7 ~ 0.9 and flow rate of secondary fuel (Qsec) from 0.6 to 4.2 L/min. As for the reference injector used in previous related studies, secondary fuel injection of 3.0 L/min is the best condition for the reduction of pressure fluctuation and combustion noise with tolerable NOx emission. For lower secondary fuel rate of 1.8 L/min, reduction of the injection diameter of reference injector results in a better performance in terms of... 

    Effect of wind tunnel wall porosity on the flow around an oscillating airfoil at transonic speeds

    , Article Scientia Iranica ; Volume 24, Issue 3 , 2017 , Pages 1069-1076 ; 10263098 (ISSN) Golestani, A ; Soltani, M. R ; Masdari, M ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    The effect of porosity in oscillating situations (to the authors' knowledge, for the first time) on a supercritical airfoil (SC0410) has been experimentally investigated. Tests have been carried out in an open circuit suction-type wind tunnel at a free stream Mach number of M = 0:80. Both static and dynamic (pitching) tests have been carried out on the mentioned airfoil. The oscillation frequency for the unsteady tests has been set to 3 and 6 Hz. The amplitude of frequency is ±1 deg. The effect of porosity has been surveyed on the magnitude of pressure fluctuations, phase shift, and lift coefficient loop. The investigations show that increasing porosity in the test section of transonic... 

    Controlling the microscale separation of immiscible liquids using geometry: A computational fluid dynamics study

    , Article Chemical Engineering Science ; Volume 220 , 2020 Kamrani, S ; Mohammadi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, we numerically determined the performance of a microscale separator comprising a lateral and a main channel to separate a two-phase flow. It was aimed to conduct continuous phase through the lateral channel and dispersed phase through the main channel. The continuous and dispersed phases were modeled as incompressible Newtonian fluids with the corresponding interface tracked by the phase-field model. The dynamics, including pressure fluctuations in the separator, were further examined. It was mechanistically demonstrated how the geometry of the separator modulates the phase separation. Further examined were the influences of various geometrical parameters on the performance of... 

    Experimental results of pressure variation in two-phase air-water flow in water tunnels

    , Article 31st IAHR Congress 2005: Water Engineering for the Future, Choices and Challenges, 11 September 2005 through 16 September 2005 ; 2005 , Pages 6523-6533 ; 8987898245 (ISBN); 9788987898247 (ISBN) Kabiri Samani, A ; Byong-Ho J ; Sang I. L ; Won S. I ; Gye-Woon C ; Sharif University of Technology
    Korea Water Resources Association  2005
    Abstract
    An experimental investigation has been carried out to verify characteristics of pressure fluctuations inside a circular, horizontal and inclined pipeline (90mm inside diameter and 10 m long) carrying two-phase air-water flow in a controlled manner (operating at room temperature and normal pressure). The pressure fluctuation was considered to be due to interaction between the fluid and air bubble compressibility in the pipe. The fluctuating pressure was studied in detail while the flow pattern was mainly slug, wavy or stratified flow. The tests were carried out varying with time, space, water flow rate/air flow rate ratio and pipe inclination. The pressure fluctuations were measured... 

    Estimation of Pressure Fluctuation Coefficient in Stilling Basins Using Computational Intelligent Models

    , M.Sc. Thesis Sharif University of Technology Mazandarani, Mahan (Author) ; Shamsai, Abolfazl (Supervisor)
    Abstract
    Hydraulic jump is a significant hydraulic phenomenon that occurs in stilling basins and causes energy dissipation of water flow. Due to the severe pressure fluctuations, cavitation, and fatigue damage to concrete materials, hydraulic jump can cause damage to the stilling basin and its related components. Therefore, studying pressure fluctuations is one of the essential topics in the safe design and operation of stilling basins. Due to the nonlinear relationship between the effective variables in the pressure fluctuation phenomenon, the use of computational intelligent models that can extract the relationship between the effective variables is necessary. In this study, laboratory data... 

    Numerical study of aero- acoustic characteristics in an automotive air-intake system

    , Article 42nd International Congress and Exposition on Noise Control Engineering 2013, INTER-NOISE 2013: Noise Control for Quality of Life ; Volume 7 , 2013 , Pages 5990-5999 ; 9781632662675 (ISBN) Jahani, K ; Beigmoradi, S ; Sharif University of Technology
    OAL-Osterreichischer Arbeitsring fur Larmbekampfung  2013
    Abstract
    Compartment noise has gained significant importance to meet customer expectation. One of the dominant sources of noise from whole engine as a system is the one which is induced from fresh air intake. Geometrical features in air induction systems (AIS) airflow path are often responsible for unusual noise due to the complex air flow structure and its interaction with the internal acoustic field. To reduce air intake noise basically resonator and expansion chamber are used on automotive vehicles. Resonators are widely used for noise reduction of air induction systems. Although, airflow bench tests are faster to evaluate various alternate design geometries, understanding the mechanism of such... 

    Time-varying structural reliability of launch vehicle via extreme response approach

    , Article Journal of Spacecraft and Rockets ; Volume 54, Issue 1 , 2017 , Pages 306-314 ; 00224650 (ISSN) Raouf, N ; Pourtakdoust, S. H ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2017
    Abstract
    Time-varying structural reliability of a multistage solid-propellant launch vehicle subjected to deterministic and stochastic loads is investigated. The study is of practical importance because the launch vehicle's structure is influenced by a combination of external aerodynamics as well as inertial and internal ballistic loads emanating from the solid rocket motors. In addition, as launch-vehicle flight conditions change during flight, the vehicle will be subjected to time-varying loads. In this sense, the environmental, aerodynamic, and internal pressure fluctuations can be interpreted as stochastic forces affecting the launch-vehicle structural reliability. To account for temporal... 

    The amount and temporal structure of center of pressure fluctuations during quiet standing in patients with chronic low back pain

    , Article Motor Control ; Volume 24, Issue 1 , 2020 , Pages 91-112 Azadinia, F ; Ebrahimi Takamjani, I ; Kamyab, M ; Asgari, M ; Parnianpour, M ; Sharif University of Technology
    Human Kinetics Publishers Inc  2020
    Abstract
    The characteristics of postural sway were assessed in quiet standing under three different postural task conditions in 14 patients with nonspecific chronic low back pain and 12 healthy subjects using linear and nonlinear center of pressure parameters. The linear parameters consisted of area, the mean total velocity, sway amplitude, the SD of velocity, and the phase plane portrait. The nonlinear parameters included the Lyapunov exponent, sample entropy, and the correlation dimension. The results showed that the amount of postural sway was higher in the patients with low back pain compared with the healthy subjects. Assessing the nonlinear parameters of the center of pressure showed a lower... 

    Investigation of valve-closing law on the maximum head rise of a hydropower plant

    , Article Scientia Iranica ; Volume 16, Issue 3 B , 2009 , Pages 222-228 ; 10263098 (ISSN) Vakil, A ; Firoozabadi, B ; Sharif University of Technology
    2009
    Abstract
    Piping systems commonly experience the transient-state situation as the result of changes to flow conditions during pump failures, valve closures or turbine load rejection. This paper addresses transients as a consequence of the load rejection of a Francis hydropower plant (Karun 4, Ahwaz, Iran). To control the turbine system and related equipment during load rejection, the valve closing law of wicket gates is of paramount importance. The pressure rise at the end of the pressure shaft, the pressure drop in the draft tube and the speed rise while the electromagnetic braking torque disappears are solely dependent on the closing curve. Thus, an optimum closing law can eliminate the probable... 

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions...