Loading...
Search for: pressure-recovery-coefficient
0.006 seconds

    Experimental and numerical investigations of radial flow compressor component losses

    , Article Journal of Mechanical Science and Technology ; Vol. 28, issue. 6 , 2014 , p. 2189-2196 Mojaddam, M ; Hajilouy-Benisi, A ; Abolfazl Moussavi-Torshizi, S ; Movahhedy, M.R ; Durali, M ; Sharif University of Technology
    Abstract
    This research numerically and experimentally investigates a small turbocharger radial flow compressor with a vane-less diffuser and volute. The geometry of the compressor is obtained via component scanning, through which a 3D model is prepared. The flow inside this model is numerically analyzed by using a Navier-Stokes solver with a shear-stress transport turbulence model. The characteristic curves of the compressor and the contributions of its components to total pressure drop are acquired by measuring the static and total pressures at different cross sections of the compressor. Numerical results are verified with the experimental test results. The model results exhibit good agreement with... 

    Effect of the wet outlet geometry on the shockwave position in supersonic separators

    , Article Chemical Engineering and Technology ; Volume 43, Issue 1 , January , 2020 , Pages 126-136 Majidi, D ; Farhadi, F ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Supersonic separators (3Ss) are applied in gas separation processes. Two-dimensional simulation is employed to investigate the effect of operational and thermophysical parameters on the shockwave position. In addition, the impact of the cyclonic part and wet outlet geometry is evaluated by proposing four cases. Increasing the length of the cyclonic part exerts positive and negative influences on the performance of the 3S and the pressure recovery coefficient, respectively. The optimum length is determined between 10 and 15 cm. To demonstrate negative effects of wasted air from the wet outlet, its flow has been increased from 3.6 to 8.1 % of the inlet flow. Improved performance of the 3S is...