Loading...
Search for: pressure-transient-analysis
0.009 seconds

    Numerical solution of the nonlinear diffusivity equation in heterogeneous reservoirs with wellbore phase redistribution

    , Article Journal of Petroleum Science and Engineering ; Vol. 114 , 2014 , pp. 82-90 ; ISSN: 09204105 Khadivi, K ; Soltanieh, M ; Sharif University of Technology
    Abstract
    We consider the application of the Finite Element Method (FEM) for numerical pressure transient analysis under conditions where no reliable analytical solution is available. Pressure transient analysis is normally based on various analytical solutions of the linear one-dimensional diffusion equation under restrictive assumptions about the formation and its boundaries. For example, the formation is either assumed isotropic or a restrictive a priori assumption is made about its heterogeneity. The wellbore storage effect is also often considered without regard to the possibility of phase redistribution. In many practical situations such restrictions are not justified and analytical solutions do... 

    A coupled wellbore-reservoir flowmodel for numerical pressure transient analysis in vertically heterogeneous reservoirs

    , Article Journal of Porous Media ; Volume 16, Issue 5 , 2013 , Pages 395-400 ; 1091028X (ISSN) Khadivi, K ; Soltanieh, M ; Farhadpour, F. A ; Sharif University of Technology
    2013
    Abstract
    Pressure transient analysis in vertically heterogeneous reservoirs is examined. The inclusion of a separate model for the free fluid flow in the wellbore is essential to allow for hydraulic communication and mixing of the fluid issuing from different reservoir layers. A two-dimensional model coupling Darcy flow in the reservoir with Navier-Stokes flow in the wellbore is developed and solved by the finite element technique. The coupled wellbore-reservoir flow model is used to analyze a layered reservoir with an abrupt change in permeability and a thick formation showing a gradual change in permeability with depth. Contrary to conventional reservoir models, this new model is able to capture... 

    Possible pitfalls in pressure transient analysis: Effect of adjacent wells

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 9, Issue 4 , 2019 , Pages 3023-3038 ; 21900558 (ISSN) Mirzaalian Dastjerdi, A ; Eyvazi Farab, A ; Sharifi, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Abstract: Well testing is one of the important methods to provide information about the reservoir heterogeneity and boundary limits by analyzing reservoir dynamic responses. Despite the significance of well testing data, misinterpreted data can lead us to a wrong reservoir performance prediction. In this study, we focus on cases ignoring the adjacent well’s production history, which may lead to misinterpretation. The analysis was conducted on both homogeneous and naturally fractured reservoirs in infinite-acting and finite-acting conditions. The model includes two wells: one is “tested well” and the other is “adjacent one.” By studying different scenarios and focusing on derivative plots, it... 

    Pressure-transient analysis of bottomhole pressure and rate measurements by use of system-identification techniques

    , Article SPE Journal ; Volume 20, Issue 5 , October , 2015 , Pages 1005-1027 ; 1086055X (ISSN) Mansoori, M ; Van Den Hof, P. M. J ; Jansen, J. D ; Rashtchian, D ; Sharif University of Technology
    Society of Petroleum Engineers  2015
    Abstract
    This study presents a novel perspective on pressure-transient analysis (PTA) of downhole-pressure and flow-rate data by use of system-identification (SI) techniques as widely used in advanced process engineering. Key features of the paper are that it considers the classic PTA process from a system-theoretical perspective; derives the causal structure of the flow dynamics; proposes a method to deal with continuously varying pressure and flow-rate signals contaminated with correlated noise, which estimates physical reservoir parameters through a systematic matching procedure in the frequency domain; and can cope with arbitrary (i.e., not necessarily piecewise constant) flow-rate signals. To... 

    Pressure and rate transient modeling of multi fractured horizontal wells in shale gas condensate reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 185 , 2020 Dahim, S ; Taghavinejad, A ; Razghandi, M ; Rahimi Rigi, H ; Moeini, K ; Jamshidi, S ; Sharifi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Gas condensate production using technology of multi-stage hydraulically fracturing in shale gas condensate reservoirs' horizontal wells is a new topic of unconventional resources studies. Thus, shale gas condensate as a new source of energy can be considered as an important issue for development and further studies. In this work, a semi-analytical solution of gas and oil two-phase flow is presented for pressure transient analysis (PTA) and rate transient analysis (RTA) of a shale gas condensate reservoir's production data. Fluid flow assumption here is flow in a pseudo triple-porosity porous media, which are matrix, natural fractures and adsorbed gas. Adsorbed gas is a form of gas in porous...