Loading...
Search for: pressure-vessels
0.006 seconds
Total 34 records

    Determination of residual stresses in autofrettaged compound tubes for different geometries

    , Article 2007 ASME Pressure Vessels and Piping Conference, PVP 2007, San Antonio, TX, 22 July 2007 through 26 July 2007 ; Volume 5 , 2008 , Pages 53-61 ; 0277027X (ISSN); 0791842835 (ISBN); 9780791842836 (ISBN) Mohammadi, M ; Farrahi, G. H ; Hoseini, S. H ; Sharif University of Technology
    2008
    Abstract
    In this paper, using numerical solutions of bore and outer radius hoop residual stresses in various tube geometries for autofrettage prior to shrink fit and shrink fit prior to autofrettage design are investigated, and the results are compared with monobloc autofrettaged and shrunk fit tubes. Both of the former compound tubes induce more compressive bore hoop residual stresses than a monobloc autofrettage and shrunk fit case. Furthermore, in geometries in which maximum bore hoop residual stresses are induced, the outer radius experiences acceptably low tensile residual stresses. Bore hoop residual stresses increase with increase of tube outer radius; however the rate of increasing decreases.... 

    Development of a qualified nodalization for small-break LOCA transient analysis in PSB-VVER integral test facility by RELAP5 system code

    , Article Nuclear Engineering and Design ; Volume 240, Issue 10 , October , 2010 , Pages 3309-3320 ; 00295493 (ISSN) Shahedi, S ; Jafari, J ; Boroushaki, M ; D'Auria, F ; Sharif University of Technology
    2010
    Abstract
    This paper deals with development and qualification of a nodalization for modeling of the PSB-VVER integral test facility (ITF) by RELAP5/MOD3.2 code and prediction of its primary and secondary systems behaviors at steady state and transient conditions. The PSB-VVER is a full-height, 1/300 volume and power scale representation of a VVER-1000 NPP. A RELAP5 nodalization has been developed for PSB-VVER modeling and a nodalization qualification process has been applied for the developed nodalization at steady state and transient levels and a qualified nodalization has been proposed for modeling of the PSB ITF. The 11% small-break loss-of-coolant-accident (SBLOCA), i.e. rupture of one of the... 

    Buckling of the composite cracked cylindrical shells subjected to axial load

    , Article 2003 ASME International Mechanical Engineering Congress, Washington, DC, 15 November 2003 through 21 November 2003 ; Volume 470 , 2003 , Pages 87-93 ; 0277027X (ISSN) Vaziri, A ; Nayeb Hashemi, H ; Estekanchi, H. E ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2003
    Abstract
    Cylindrical shells constitute the main structural components in pressure vessels and pipelines. Cylindrical shells made of fiber-reinforced composites are now being considered in the design of many components due to their high specific strength and stiffness. Buckling is one of the main failure considerations, when designing the cylindrical shells. The buckling behavior of the composite cylindrical shells can severely be compromised by introducing defect in the structure, due to high stress field generated around these defects. Defects could be generated during service due to cyclic loading or during manufacturing. A reliable operation of these structures require to understand the effects of... 

    Residual stress analysis of autofrettaged thick-walled spherical pressure vessel

    , Article International Journal of Pressure Vessels and Piping ; Volume 87, Issue 7 , July , 2010 , Pages 396-401 ; 03080161 (ISSN) Maleki, M ; Farrahi, G. H ; Haghpanah Jahromi, B ; Hosseinian, E ; Sharif University of Technology
    2010
    Abstract
    In this study, residual stress distributions in autofrettaged homogenous spherical pressure vessels subjected to different autofrettage pressures are evaluated. Results are obtained by developing an extension of variable material properties (VMP) method. The modification makes VMP method applicable for analyses of spherical vessels based on actual material behavior both in loading and unloading and considering variable Bauschinger effect. The residual stresses determined by employing finite element method are compared with VMP results and it is demonstrated that the using of simplified material models can cause significant error in estimation of hoop residual stress, especially near the... 

    On the material modeling of the autofrettaged pressure vessel steels

    , Article Journal of Pressure Vessel Technology, Transactions of the ASME ; Volume 131, Issue 5 , 2009 ; 00949930 (ISSN) Farrahi, G. H ; Hosseinian, E ; Assempour, A ; Sharif University of Technology
    2009
    Abstract
    Material modeling of high strength steels plays an important role in the accurate analysis of autofrettaged tubes. Although, the loading behavior of such materials is nearly elasticperfectly plastic, their unloading behavior due to Bauschinger effect is very complicated. DIN1.6959 steel is frequently used for construction of autofrettaged tubes in some countries such as Germany and Switzerland. In spite of similarity between chemical compositions of this steel with that of A723 steel, due to different material processing, these two steels have an unlikely behavior. In this paper the material behavior of DIN1.6959 was accurately modeled by uniaxial tension-compression test results. Both 6 mm... 

    Optimization of Spherical and Cylindrical Pressure Vessels with Minimization of Heat Transfer Using Spherical and Cylindrical Superelements

    , M.Sc. Thesis Sharif University of Technology Soltanizadeh, Mohammad Hossein (Author) ; Ahmadian, Mohammad Taghi (Supervisor)
    Abstract
    New development in material fabrication resulted in functionally graded materials (FGM) with properties, can vary continuously based on the desired purpose. Vast applications of these materials attracted scientists to extend the researches in this area. One of the promising applications of these materials is in the optimized spherical and cylindrical pressure vessels. Optimization is usually based on the minimization of heat transfer and maximization of the strength of the vessel under pressure. In the present dissertation, spherical and cylindrical pressure vessels are designed and characteristics of the material distribution for certain pressure and temperature is developed. In this... 

    Composite Patch Repair Design on Damaged Composite Rotating Pressurized Cross Section Based on Axiomatic Design Method

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Abed (Author) ; Abedian, Ali (Supervisor)
    Abstract
    Nowadays, composite pressure vessels are used in different industries that are deal with high pressure technologies such as aerospace, petroleum, gas and petrochemical. Composite pressure vessels structural health is checked in specified time duration with respect to standard processes. If vessels structure is damaged, its condition should reconciling with standards. If the damage is repairable, composite pressure vessel will repair, else it should be replaced. The companies repair these types of damages only in several outer layers of vessel. If the damage is deeper than a specific value, it is unusable. The purpose of this thesis is composite patch repair design on damaged composite... 

    Developing a Method to Design Non-Geodesic Reservoirs

    , M.Sc. Thesis Sharif University of Technology Shayeghi, Salar (Author) ; Dehghani Firozabadi, Roholah (Supervisor)
    Abstract
    Aim of this research can be to investigate the development of different geometries by filament winding in composite structures. This research, pressure vessel reserve and non-pressure vessel such as cylinder and cone are investigated. The most important issue for design of composite structures in different industries, is the determination of geometry, which is done with two geodesic and non-geodesic winding. In filament winding processes there are two basic challenges for designing composite vessel; first step is the determination of geometry in pressure vessel reserve and non-pressure vessel, second step obtaining modified geometry with use coefficient, the angle of entry in start filament... 

    Design of Pressure Tank by Axiomatic Method

    , M.Sc. Thesis Sharif University of Technology Rashidikhah, Mohammad Milad (Author) ; Abedian, Ali (Supervisor)
    Abstract
    The purpose of this thesis is to provide a basic design or a design tailored to the specific requirements of a particular repository. In recent years there has been a great deal of research on composite tanks and many articles have been published in this regard. But these papers have mostly focused on design without an overview of system design and merely with an optimization perspective using different algorithms. For this purpose, the research will use a axiomatic design method that allows the designer to design with a systematic perspective without the need to use optimization algorithms. This method has shown that by applying the principles governing that end product properly, it will... 

    Evaluation of the optimum pre-stressing pressure and wall thickness determination of thick-walled spherical vessels under internal pressure

    , Article Journal of the Franklin Institute ; Volume 344, Issue 5 , 2007 , Pages 439-451 ; 00160032 (ISSN) Kargarnovin, M. H ; Darijani, H ; Naghdabadi, R ; Sharif University of Technology
    2007
    Abstract
    In the present study, in the first part for a spherical vessel with known dimensions and working pressure, two methods of hoop and equivalent stress optimization across the wall thickness are employed to determine the best autofrettage pressure. In the next part for a predefined working pressure the minimum wall thickness of the vessel is calculated using two other design criteria i.e. (A) optimizing the hoop stress, and (B) assuming a suitable percent for the penetration of yielding within the wall thickness. Finally, the optimum thickness and the necessary strengthening pressure are extracted and different plots are introduced for different types of structural materials under different... 

    Wall thickness optimization of thick-walled spherical vessel using thermo-elasto-plastic concept

    , Article International Journal of Pressure Vessels and Piping ; Volume 82, Issue 5 , 2005 , Pages 379-385 ; 03080161 (ISSN) Kargarnovin, M. H ; Rezai Zarei, A ; Darijani, H ; Sharif University of Technology
    2005
    Abstract
    A study of thick-walled spherical vessels under steady-state radial temperature gradients using elasto-plastic analysis is reported. By considering a maximum plastic radius and using the thermal autofrettage method for the strengthening mechanism, the optimum wall thickness of the vessel for a given temperature gradient across the vessel is obtained. Finally, in the case of thermal loading on a vessel, the effect of convective heat transfer on the optimum thickness is considered, and a general formula for the optimum thickness and design graphs for several different cases are presented. © 2004 Elsevier Ltd. All rights reserved  

    Fracture Mechanics Analysis of Boshehr Nuclear Power Plant (BNPP) RPV during LBLOCA Using ABAQUS Software

    , M.Sc. Thesis Sharif University of Technology Mirseifi, Miryousef (Author) ; Ghafari, Mohsen (Supervisor)
    Abstract
    In nuclear power plants (NPPs), the integrity of the Reactor Pressure Vessel (RPV) is one of the most essential issues in assessing the life of the NPPs. The RPV in a nuclear power plant cannot be replaced during plant life. Hence, maintaining the integrity of the RPV nuclear power plant is of great importance. In this study, the RPV integrity of Boshehr Nuclear Power Plant (BNPP) gainst crack formation and growth in the case of LBLOCA is evaluated and studied by the finite element method (FEM) in ABAQUS using the J-Integral method and also the weight function, which is a function of crack shape. According to the results, stress values increased significantly during the LBLOCA incident. The... 

    Stress analysis of functionally graded cylinders subjected to thermo-mechanical loads based on Bernstein polynomials

    , Article ASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010, Vancouver, BC, 12 November 2010 through 18 November 2010 ; Volume 9 , 2010 , Pages 243-248 ; 9780791844465 (ISBN) Fallah, A ; Mohammadi Aghdam, M ; Pasharavesh, A ; Sharif University of Technology
    Abstract
    Stress analysis of thick walled functionally graded (FG) cylindrical pressure vessels subjected to uniform axisymmetric thermo-mechanical loads is presented using Bernstein polynomials. All thermal and mechanical properties except Poisson's ratio of the FG vessels vary through the thickness with arbitrary functions of the radial coordinate. Based on the thermo-elasticity theory, the first law of thermodynamics and axisymmetric assumption, the governing equations of the semi-coupled thermo-elasticity problem reduce to a set of second order boundary value problem. Galerkin method together with Bernstein polynomials is used to obtain solution for the governing equations. The presented method is... 

    Atomistic simulation of the effect of carbon content and carbon-rich region on irradiation response of α-Fe on picosecond timescale

    , Article Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms ; Volume 443 , 2019 , Pages 70-78 ; 0168583X (ISSN) Zamzamian, S. M ; Samadfam, M ; Feghhi, S. A ; Arjhangmehr, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    α-Fe with low carbon content is a base material which is commonly used in manufacturing of Reactor Pressure Vessel (RPV) of commercial nuclear power plants. Carbon is generally diffused to α-Fe matrix to improve some of its mechanical properties. The presence of carbon may alter the irradiation response of the steel. In the current study, using molecular dynamics simulations, we have investigated the influence of carbon (∼in either dispersed form or carbon-rich region as chain) in the primary damage states of α-Fe low carbon steels. It is found that carbons in dispersed form have no significant effect on the self-interstitial atoms (SIAs) in α-Fe. While, carbon-rich (C-rich as... 

    An analytical framework for the solution of autofrettaged tubes under constant axial strain condition

    , Article ASME 2008 Pressure Vessels and Piping Conference, PVP2008, Chicago, IL, 27 July 2008 through 31 July 2008 ; Volume 5 , July , 2008 , Pages 71-80 ; 0277027X (ISSN); 9780791848289 (ISBN) Hosseinian, E ; Farrahi, G. H ; Movahhedy, M. R ; Pressure Vessels and Piping ; Sharif University of Technology
    2008
    Abstract
    Autofrettage is a technique for introducing beneficial residual stresses into cylinders. Both analytical and numerical methods are used for analysis of the autofrettage process. Analytical methods have been presented only for special cases of autofrettage. In this work, an analytical framework for the solution of autofrettaged tubes with constant axial strain conditions is developed. Material behavior is assumed to be incompressible and two different quadratic polynomials are used for strain hardening in loading and unloading. Clearly, elastic-perfectly plastic and linear hardening materials are special cases of this general model. This material model is convenient for description of the... 

    On the material modeling of the autofrettaged pressure vessel steels

    , Article ASME 2008 Pressure Vessels and Piping Conference, PVP2008, Chicago, IL, 27 July 2008 through 31 July 2008 ; Volume 5 , July , 2008 , Pages 63-70 ; 0277027X (ISSN); 9780791848289 (ISBN) Farrahi, G. H ; Hosseinian, E ; Assempour, A ; Pressure Vessels and Piping ; Sharif University of Technology
    2008
    Abstract
    Material modeling of the high strength steels plays an important role in accurate analysis of autofrettaged tubes. Although, the loading behavior of such materials is nearly elastic-perfectly plastic, their unloading behavior due to Bauschinger effect is very complicated. DIN1.6959 steel is frequently used for construction of autofrettaged tubes in some countries such as Germany and Switzerland. In spite of similarity between chemical compositions of this steel with A723 steel, due to different material processing, two steels have unlikely behavior. In this paper material behavior of DIN1.6959 has been accurately modeled by uniaxial tension-compression test results. Both 6 mm and 12.5 mm... 

    Investigating the behavior of cracks in welded zones of supporting structure of spherical pressure vessel under seismic loading

    , Article Journal of Constructional Steel Research ; Volume 191 , 2022 ; 0143974X (ISSN) Tafazoli, S ; Ghazi, M ; Adibnazari, S ; Rofooei, F. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, the numerical studies on the semi-elliptical crack behavior in different locations of welded zones in the supporting structure of a spherical pressure vessel under an earthquake are presented. The cracks in the welded zones of supporting structures under earthquake effects may jeopardize the safety of spherical pressure vessels and result in catastrophic failure. A detailed finite element sub-modeling technique is carried out to compute the mixed-mode stress intensity factors along the crack front. Furthermore, crack behavior with different aspect ratios a/c: 0.25, 0.5, and 0.75 at the weld and the heat-affected zone of the supporting structure is evaluated. The... 

    Static and Dynamic Analysis of Cylindrical Vessel With Spherical Cap made of Functional Graded Materials Subjected to Seismic by Using Spherical and Cylindrical Superelements

    , M.Sc. Thesis Sharif University of Technology Abdollahi Khalegh Abadi, Hossein (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Hoviat Talab, Maryam (Supervisor)
    Abstract
    Recent developments in technology resulted in the design of functionally graded materials (FGM) in which properties can be changed gradually. One of the applications of these materials is in the pressure vessels. These materials can be used in a manner which minimize the heat loss and corrosion and maximize the strength. Most of the vessels include a cylinder and a hemispherical cap which used for the storage of liquid or gas. The vessels should be strength enough to handle high pressure as well as base vibration due to earthquake. Static and dynamic analyses of these structures must be performed prior to any application. In this project by utilizing finite element method and cylindrical... 

    Constitutive law of finite deformation elastoplasticity with proportional loadings

    , Article Journal of Pressure Vessel Technology, Transactions of the ASME ; Volume 135, Issue 6 , September , 2013 ; 00949930 (ISSN) Darijani, H ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    In this paper, decomposition of the total strain into elastic and plastic parts is investigated for extension of elastic-type constitutive models to finite deformation elastoplasticity. In order to model the elastic behavior, a Hookean-type constitutive equation based on the logarithmic strain is considered. Based on this constitutive equation and assuming the deformation theory of Hencky as well as the yield criteria of von Mises, the elastic-plastic behavior of materials at finite deformation is modeled in the case of the proportional loading. Moreover, this elastoplastic model is applied in order to determine the stress distribution in thick-walled cylindrical pressure vessels at finite... 

    Verification of stress model in dissimilar materials of varying cladded pipes using a similar cladded plate model

    , Article ASME 2020 Pressure Vessels and Piping Conference, PVP 2020, 3 August 2020 ; Volume 8 , October , 2020 Kogo, B ; Wang, B ; Chizari, M ; Wrobel, L ; Pressure Vessels and Piping Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2020
    Abstract
    This paper continues previous research performed by the authors on the modelling of dissimilar welded joints with varying clad thicknesses. This study aims to validate the use of a clad plate model as a replacement to the previous clad pipe model. To fulfill the hypothesis of the study, possible deformation or angular shrinkages occurring at weld joints have been simulated using a commercial finite element software. In parallel, angular shrinkages have been validated using the experimental data with the underlying concept of Gaussian transformation of plates into pipes. The welding of the two dissimilar materials has been carried out in-house with the aid of a Tungsten Arc weld with dynamic...