Loading...
Search for: primary-reference-fuels
0.004 seconds

    Investigation of the effect of reformer gas on PRFs HCCI combustion based on exergy analysis

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 7 , 2016 , Pages 4278-4295 ; 03603199 (ISSN) Neshat, E ; Saray, R. K ; Hosseini, V ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Lack of a direct method to control combustion timing is one of the main disadvantages of homogeneous charge compression ignition (HCCI) engines. Fuel blending, in which two fuels with different auto-ignition characteristics are blended, can be used to control combustion timing. Utilizing different additives is another method for HCCI combustion control. The aim of this research is investigation on the effect of reformer gas addition on the availability terms in HCCI engines fueled with primary reference fuels (PRFs). A multi zone model (MZM) coupled with a semi detailed chemical kinetics mechanism is used for calculation of different terms of exergy analysis. Heat and mass transfer between... 

    Effect of reformer gas blending on homogeneous charge compression ignition combustion of primary reference fuels using multi zone model and semi detailed chemical-kinetic mechanism

    , Article Applied Energy ; Volume 179 , 2016 , Pages 463-478 ; 03062619 (ISSN) Neshat, E ; KhoshbakhtiSaraya Saray, R ; Hosseini, V ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This study mainly aims to investigate the effect of reformer gas (RG) addition on the performance of homogeneous charge compression ignition (HCCI) engines using a multi zone model. The developed model is validated using a wide range of experimental data of a cooperative fuel research engine. Blended fuels of isooctane and n-heptane, known as primary reference fuels, with different octane numbers are used as the main engine fuel. A semi detailed chemical-kinetic mechanism containing 101 species and 594 reactions is used to simulate the combustion of blended fuels. The study is performed with different percentages of RG (0–30%). The results show that RG reduces the rate of some H abstraction...