Loading...
Search for: principal-and-combination-parametric-resonance
0.005 seconds

    Bending-torsional instability of a viscoelastic cantilevered pipe conveying pulsating fluid with an inclined terminal nozzle

    , Article Journal of Mechanical Science and Technology ; Volume 32, Issue 7 , July , 2018 , Pages 2999-3008 ; 1738494X (ISSN) Askarian, A. R ; Abtahi, H ; Firouz Abadi, R. D ; Haddadpour, H ; Dowell, E. H ; Sharif University of Technology
    Korean Society of Mechanical Engineers  2018
    Abstract
    In the present study, dynamic stability of a viscoelastic cantilevered pipe conveying fluid which fluctuates harmonically about a mean flow velocity is considered; while the fluid flow is exhausted through an inclined end nozzle. The Euler-Bernoulli beam theory is used to model the pipe and fluid flow effects are modelled as a distributed load along the pipe which contains the inertia, Coriolis, centrifugal and induced pulsating fluid flow forces. Moreover, the end nozzle is modelled as a follower force which couples bending vibrations with torsional ones. The extended Hamilton's principle and the Galerkin method are used to derive the bending-torsional equations of motion. The coupled...