Loading...
Search for: projected-density-of-states
0.006 seconds

    Pressure dependence of effective Coulomb interaction parameters in BaFe2As2 by first-principle calculation

    , Article Physica C: Superconductivity and its Applications ; Volume 548 , 15 May , 2018 , Pages 61-64 ; 09214534 (ISSN) Aghajani, M ; Hadipour, H ; Akhavan, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Pressure dependence of the onsite Coulomb interactions of the BaFe2As2 has been studied by employing the constrained random phase approximation within first-principle calculations. Analyzing total and projected density of states, a pseudogap is found for dxy band at the energy roughly 0.25 eV higher than the Fermi level. Also, by applying pressure the spectral weight of the dxy orbital vanishes while other orbitals remain metallic. The different screening channels, as discussed in four different models, affect significantly on the Hubbard U while the Hund J remains almost unchanged. The average onsite bare and partially and fully screened Coulomb interactions increase with different rates... 

    Theoretical study of the electron transport through the cysteine amino acid nanomolecular wire

    , Article International Journal of Nanoscience ; Volume 7, Issue 2-3 , 2008 , Pages 95-102 ; 0219581X (ISSN) Ganji, M. D ; Aghaie, H ; Gholami, M. R ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2008
    Abstract
    In this paper, we study the electrical transport and Negative Differential Resistance (NDR) in a single molecular conductor consisting of a cysteine sandwiched between two Au(111) electrodes via the Density Functional Theory-based Nonequilibrium Green's Function (DFT-NEGF) method. We show that (surprisingly, despite their apparent simplicity, these Au/cysteine/Au nanowires are shown to be a convenient NDR device) the smallest two-terminal molecular wire can exhibit NDR behavior to date. Experiments with a conventional or novel self-assembled monolayer (SAM) are proposed to test these predictions. The projected density of states (PDOSs) and transmission coefficients T(E) under various... 

    Investigation of the electronic structure of tetragonal B3N3 under pressure

    , Article Applied Physics A: Materials Science and Processing ; Volume 124, Issue 5 , 2018 ; 09478396 (ISSN) Mohamadian, A ; Bagheri, M ; Faez, R ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    In this paper, we perform self-consistent field relaxation and electronic structure calculations of tetragonal B3N3 based on density functional theory, using LDA pseudopotential in the pressure range between − 30 and + 160 GPa. Although metallic B3N3 has a honeycomb structure, according to the electronic band structure, it has bulk properties (not layered) with effective mass non-interacting electron gas behavior near Fermi level (not Dirac massless) and a small anisotropy, about 0.56 in effective mass in the direction of MA relative to XM. Electronic calculations of the B3N3 under pressure show that increasing positive pressure causes the decrease of Fermi energy and total electronic... 

    First principles study of the I-V characteristics of the alkane-thiols nano-molecular wires

    , Article Current Applied Physics ; Volume 9, Issue 2 , 2009 , Pages 367-373 ; 15671739 (ISSN) Aghaie, H ; Gholami, M. R ; Darvish Ganji, M ; Taghavi, M. M ; Sharif University of Technology
    2009
    Abstract
    We report a density functional non-equilibrium Green's function study of electrical transport in a single molecular conductor consisting of an ethane-dithiolate (C2H4S2) molecular wire with two sulfur end groups bonded to the Au(1 1 1) electrodes. We show that the current was increased by increasing the external voltage biases. The projected density of states (PDOS) and transmission coefficients T(E) under various external voltage biases are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to the increase of the current. Furthermore, the investigation of the transport properties of the pentane-dithiolate (C5H10S2)...