Loading...
Search for: proportional-control-system
0.005 seconds
Total 46 records

    Comparison of four adaptive PID controllers

    , Article Scientia Iranica ; Volume 6, Issue 5 , 2000 , Pages 129-136 ; 10263098 (ISSN) Shahrokhi, M ; Fanaei, M. A ; Sharif University of Technology
    Sharif University of Technology  2000
    Abstract
    PID controllers have been used for many years in industry and if a controller is well tuned, its performance is acceptable for many industrial processes. When the operating point is changed, due to nonlinear behavior of most processes, the controller should be retuned. In this regard, several self-tuning PID controllers are proposed in the literature. In this paper, four such algorithms are compared through simulation and experimental studies. In the simulation study, the effects of factors such as process pole locations, non-minimum phase behavior and model changes on the performance of the schemes are investigated. Simulation and experimental results demonstrate that one of the schemes... 

    Robust non-fragile fractional order PID controller for linear time invariant fractional delay systems

    , Article Journal of Process Control ; Vol. 24, issue. 9 , 2014 , pp. 1489-1494 Mesbahi, A ; Haeri, M ; Sharif University of Technology
    Abstract
    A fractional order PID controller is designed to stabilize fractional delay systems with commensurate orders and multiple commensurate delays, where the time delays in the system may belong to several distinct intervals. Moreover, the controller parameters should belong to given intervals. In order to stabilize the system, the D-subdivision method is employed to choose the stabilizing set of the controller parameters from their available values. Furthermore, the nearest values of the obtained stabilizing set to their mean values are selected as the controller parameters so that a non-fragile controller is concluded. Two numerical examples evaluate the proposed control design method  

    Linear output feedback control of a three-pole magnetic bearing

    , Article IEEE/ASME Transactions on Mechatronics ; Vol. 19, issue. 4 , 2014 , pp. 1323-1330 ; ISSN: 10834435 Darbandi, S. M ; Behzad, M ; Salarieh, H ; Mehdigholi, H ; Sharif University of Technology
    Abstract
    The design and implementation of linear and nonlinear control methods for a three-pole active magnetic bearing (AMB) is presented in this paper. It is shown that the system has nearly linear dynamics by adding a bias to coil currents. A decentralized PID feedback law and an integral sliding mode controller are proposed and the unknown state variables of the system are estimated by the Kalman filter. The optimal gains of the linear controller are determined by the LQG technique. To evaluate the effectiveness of the proposed controllers, they are implemented on an experimental setup. The experimental results show that the proposed methods can effectively stabilize the three-pole AMB. The... 

    Optimal PID control of a nano-Newton CMOS-MEMS capacitive force sensor for biomedical applications

    , Article Mechanics and Industry ; Vol. 15, issue. 2 , January , 2014 , p. 139-145 Mozhdehi, R. J ; Ghafari, A. S ; Sharif University of Technology
    Abstract
    This paper presents closed loop simulation of a CMOS-MEMS force sensor for biomedical applications employing an optimal proportional-integral-derivative controller. Since the dynamic behavior of the sensor under investigation is nonlinear the iterative feedback tuning approach was proposed for optimal gains tuning of the proposed controller. Simulation results presented in this research illustrate that the proposed controller suppresses the undesired in-plane vibration induced by environment or gripper 40 times faster than the nonlinear controller proposed in the literature. To suppress the maximum input disturbance the maximum voltage was approximately 18 V which was less than the pull-in... 

    A novel LQR based optimal tuning method for IMP-based linear controllers of power electronics/power systems

    , Article Proceedings of the IEEE Conference on Decision and Control, 12 December 2011 through 15 December 2011 ; 2011 , Pages 7711-7716 ; 01912216 (ISSN) ; 9781612848006 (ISBN) Hasanzadeh, A ; Edrington, C. S ; Mokhtari, H ; Sharif University of Technology
    2011
    Abstract
    This paper presents a new method for tuning linear controllers such as Proportional-Integrating (PI) and Proportional-Resonant (PR) structures which are frequently used in different power electronic and power system applications. Those controllers are placed within a general structure offered by the Internal Model Principle (IMP) of control theory. In this paper, the first perspective uses the well-known concept of Linear Quadratic Regulator (LQR) to address the problem as a regulation problem. Matrix Q of the LQR design is then finely adjusted in order to assure desired transient response for the system. The second perspective is based on redefining the LQR problem in order to make it... 

    Temperature control of a cutting process using fractional order proportional-integral-derivative controller

    , Article Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME ; Volume 133, Issue 5 , March , 2011 ; 00220434 (ISSN) Tavakoli Kakhki, M ; Haeri, M ; Sharif University of Technology
    2011
    Abstract
    In this paper, the fractionalized differentiating method is implemented to reduce commensurate fractional order models complexity. The prominent properties of this method are its simplicity and guarantee of preserving the stability of a specific class of fractional order models in their reduced counterparts. The presented reduction method is employed in simplifying complicated fractional order controllers to a fractional order PID (FOPID) controller and proposing tuning rules for its parameters adjustment. Finally, the efficiency of the FOPID tuning rule obtained based on the proposed reduction method is shown in the temperature control of a cutting process  

    Fractional order model reduction approach based on retention of the dominant dynamics: Application in IMC based tuning of FOPI and FOPID controllers

    , Article ISA Transactions ; Volume 50, Issue 3 , July , 2011 , Pages 432-442 ; 00190578 (ISSN) Tavakoli Kakhki, M ; Haeri, M ; Sharif University of Technology
    2011
    Abstract
    Fractional order PI and PID controllers are the most common fractional order controllers used in practice. In this paper, a simple analytical method is proposed for tuning the parameters of these controllers. The proposed method is useful in designing fractional order PI and PID controllers for control of complicated fractional order systems. To achieve the goal, at first a reduction technique is presented for approximating complicated fractional order models. Then, based on the obtained reduced models some analytical rules are suggested to determine the parameters of fractional order PI and PID controllers. Finally, numerical results are given to show the efficiency of the proposed tuning... 

    Simple fractional order model structures and their applications in control system design

    , Article European Journal of Control ; Volume 16, Issue 6 , 2010 , Pages 680-694 ; 09473580 (ISSN) Tavakoli Kakhki, M ; Haeri, M ; Tavazoei , M. S ; Sharif University of Technology
    2010
    Abstract
    In this paper, firstly a four-parameter fractional order model structure is introduced to approximate processes having S-shaped step responses. Three different strategies are presented in order to determine the parameters of the proposed model. In a special case where the proposed model is not satisfactory, another fractional order model structure with five free parameters is introduced to improve the model approximation. Also in this case, a procedure is provided to estimate the parameters of the introduced five-parameter model. Then, some common classical integer order control design approaches are modified or extended to their fractional order counterparts in order to incorporate the... 

    Robustness in fractional proportional-integral-derivative-based closed-loop systems

    , Article IET Control Theory and Applications ; Volume 4, Issue 10 , Volume 4, Issue 10 , 2010 , Pages 1933-1944 ; 17518644 (ISSN) Akbari Moornani, K ; Haeri, M ; Sharif University of Technology
    Abstract
    Robustness of a fractional proportional-integral-derivative (PID)-based control system is investigated. At first the largest pathwise connected region subset of a box in three-dimensional space of the parameters of the model is determined such that the closed-loop system is bounded-input bounded-output stable for any point inside it. Then a value that represents the size (in a specified sense) of the calculated region in the first stage and can be considered as a margin for the robustness of the closed-loop system is computed. Furthermore, lower and upper frequency bounds required in depiction of boundaries of the region and computing the mentioned margin are provided. Some special cases in... 

    Comment on “Design of PID controllers for interval plants with time delay”

    , Article Journal of Process Control ; Volume 44 , 2016 , Pages 160-161 ; 09591524 (ISSN) Firouzbahrami, M ; Nobakhti, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In [1] three theorems are presented which relate to the problem of stabilizing PID controller design for interval time-delay plants. We present a counterexample for these results  

    Design and assessment of variable-structure LQG PID multivariable controllers

    , Article Optimal Control Applications and Methods ; 2016 ; 01432087 (ISSN) Mousavi, H ; Nobakhti, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    Control Performance Assessment (CPA) and tuning of PID controllers are studied in this paper. We propose a framework for systematic analysis of the tradeoff between the structural complexity of the controller and its performance. As the measure of the controller performance, an LQG based index is used. The problem is augmented with an additional term which forces sparsity on the complexity of a decentralized PID controller. The desired complexity is controlled via a weighting parameter which determines the cost of each additional element (i.e., P, I, and D terms). The result is a decentralized multivariable PID controller in which the complexity of each loop controller is optimized such that... 

    Design and assessment of variable-structure LQG PID multivariable controllers

    , Article Optimal Control Applications and Methods ; Volume 38, Issue 4 , 2017 , Pages 634-652 ; 01432087 (ISSN) Mousavi, H ; Nobakhti, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2017
    Abstract
    Control Performance Assessment (CPA) and tuning of PID controllers are studied in this paper. We propose a framework for systematic analysis of the tradeoff between the structural complexity of the controller and its performance. As the measure of the controller performance, an LQG based index is used. The problem is augmented with an additional term which forces sparsity on the complexity of a decentralized PID controller. The desired complexity is controlled via a weighting parameter which determines the cost of each additional element (i.e., P, I, and D terms). The result is a decentralized multivariable PID controller in which the complexity of each loop controller is optimized such that... 

    An extended dynamic matrix control design for quasi-resonant converters

    , Article 2008 IEEE 2nd International Power and Energy Conference, PECon 2008, Johor Baharu, 1 December 2008 through 3 December 2008 ; January , 2008 , Pages 1147-1151 ; 9781424424054 (ISBN) Tahami, F ; Ebad, M ; Sharif University of Technology
    2008
    Abstract
    The Extended dynamic matrix control (EDMC) has been proved to extend the existing version of the linear model predictive control to control nonlinear systems. In this method, the control input is determined based on the linear model approximation of the system that is updated during each sampling interval. In this paper, by using this method, a new control scheme for quasi-resonant converters is described. This control offers an excellent transient response and a good tracking. © 2008 IEEE  

    Optimum design of fractional order PID for MIMO and SISO systems using particle swarm optimization techniques

    , Article 4th IEEE International Conference on Mechatronics, ICM 2007, Kumamoto, 8 May 2007 through 10 May 2007 ; 2007 ; 142441184X (ISBN); 9781424411849 (ISBN) Sadati, N ; Zamani, M ; Mohajerin, P ; Sharif University of Technology
    2007
    Abstract
    In this paper, a novel design approach for determination of the optimal Fractional Order PID (FOPID) controllers, using the Particle Swarm Optimization (PSO) method is presented. Fractional calculus can provides good performance and robustness for FOPID controllers in comparison with the conventional PID and even other types of classical controllers, because of the arbitrary order of fractional calculus presented in this scheme. This paper demonstrates in details how to employ the PSO method to search efficiently for the optimal FOPID controller parameters in SISO and MIMO systems. The proposed approach is applied to an electromagnetic suspension system as an example to illustrate the design... 

    Modeling and control of a naphtha thermal cracking pilot plant

    , Article Industrial and Engineering Chemistry Research ; Volume 45, Issue 10 , 2006 , Pages 3574-3582 ; 08885885 (ISSN) Masoumi, M ; Shahrokhi, M ; Sadrameli, M ; Towfighi, J ; Sharif University of Technology
    2006
    Abstract
    A computer-controlled pilot plant has been constructed to study the dynamical behavior and control of the thermal cracking furnace. The governing equations that describe the furnace dynamics are presented, and, based on these equations and a kinetic model, software that simulates the steady-state behavior of the system has been developed. The furnace is divided into eight zones that can be heated independently, and, therefore, any desired temperature profile can be applied. The variables to be measured are the furnace zone temperature, coil outlet temperature (COT), and product yield. Two different control strategies (namely, COT control and furnace wall temperature control) are applied... 

    Modeling and control of ionic polymer-metal composite structures

    , Article 13th International Congress on Sound and Vibration 2006, ICSV 2006, Vienna, 2 July 2006 through 6 July 2006 ; Volume 1 , 2006 , Pages 677-681 ; 9781627481502 (ISBN) Yousefi Koma, A ; Fazeli, R ; Sharif University of Technology
    2006
    Abstract
    Robotic devices are traditionally actuated by hydraulic systems or electric motors. However, in compact robotic systems, new actuator technologies are required. Ionic Polymer-Metal Composites (IPMCs) are attractive electroactivc polymer actuators because of their characteristics of large electrically induced bending, mechanical flexibility, low excitation voltage, low density, and ease of fabrication. A dynamic analytical model of IPMC is developed in this study. An RC model is employed based on time response results of a typical silver deposited IPMC. Results show that the electrical model is a suitable presentation of IPMC actuators. The model is tested with two experimental data of IPMC... 

    Modeling and control of dissolved oxygen concentration in the fermentation of glucose to gluconic acid

    , Article Periodica Polytechnica: Chemical Engineering ; Volume 57, Issue 1-2 , 2013 , Pages 63-70 ; 03245853 (ISSN) Kazemi, M. A ; Bamdad, H ; Papari, S ; Yaghmaei, S ; Sharif University of Technology
    2013
    Abstract
    Fermentation systems are often highly nonlinear, with poorly understood dynamic behaviour of the reactor. In this work, mathematical modeling of the fermentation process based on aeration rate control was performed in a semi-batch airlift loop bioreactor. The bioconversion of glucose to gluconic acid by the Aspergillus niger strain was considered in an oxygen consuming system in the liquid phase. The proper kinetic model for the bioconversion of glucose to gluconic acid was investigated using experimental data from a 40 dm3reactor. Kinetic parameter estimation was used from the literature. The model was validated by experimental data and was compared with the Monod kinetic model. The... 

    AQM controller design for TCP networks based on a new control strategy

    , Article Telecommunication Systems ; Volume 57, Issue 4 , December , 2013 , Pages 295-311 ; 10184864 (ISSN) Kahe, G ; Jahangir, A. H ; Ebrahimi, B ; Sharif University of Technology
    Kluwer Academic Publishers  2013
    Abstract
    When the network suffers from congestion, the core or edge routers signal the incidence of congestion through the active queue management (AQM) to the sources. The time-varying nature of the network dynamics and the complex process of retuning the current AQM algorithms for different operating points necessitate the development of a new AQM algorithm. Since the non-minimum phase characteristics of the network dynamics restrict direct application of the proportional-integral-derivative (PID) controller, we propose a compensated PID controller based on a new control strategy addressing the phase-lag and restrictions caused by the delay. Based on the unstable internal dynamics caused by the... 

    Design of fractional order proportional-integral-derivative controller based on moment matching and characteristic ratio assignment method

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 225, Issue 8 , December , 2011 , Pages 1040-1053 ; 09596518 (ISSN) Tabatabaei, M ; Haeri, M ; Sharif University of Technology
    2011
    Abstract
    This paper presents a new analytical method to design fractional-order proportional- integral-derivative (PID) controllers. The control parameters are calculated so that the closedloop system approximates a desired transfer function with transient response requirements. This function is determined based on the characteristic ratio assignment method. The control parameters are calculated by matching the first three moments of the closed-loop transfer function with the corresponding values of the desired system. Furthermore, to ensure closed-loop stability the proposed method is improved by using the shifted moments around the crossover frequency. Illustrative examples are given to show the... 

    Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers

    , Article Energy ; Volume 90 , October , 2015 , Pages 1508-1521 ; 03605442 (ISSN) Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    To achieve a cost-effective and reliable use of wind power generation, advanced control techniques are required. In this paper, the application of two control strategies for the improvement of wind turbine power output is investigated in the presence of model/environmental uncertainties. Rotational speed of the wind turbine and consequently its power output are controlled via manipulation of blades pitch angle (at a constant generator torque). First, the classical PID controller is designed based on root locus analysis while in the second scheme, an H∞-robust controller is designed via μ-synthesis based on DKiteration algorithm. Performance of the two controllers in tracking of the desired...