Loading...
Search for: prosthesis
0.006 seconds
Total 39 records

    Effects of prosthetic mass distribution on the spatiotemporal characteristics and knee kinematics of transfemoral amputee locomotion

    , Article Gait and Posture ; Volume 37, Issue 1 , 2013 , Pages 78-81 ; 09666362 (ISSN) Hekmatfard, M ; Farahmand, F ; Ebrahimi, I ; Sharif University of Technology
    2013
    Abstract
    This study was designed to investigate the effect of changing the location of the center of mass (COM) of transfemoral prostheses on the spatiotemporal and kinematical characteristics of the amputee gait, while maintaining the prosthetic mass fixed. Ten men with unilateral traumatic transfemoral amputation participated in gait analysis, 2-min walk and subject preference tests. Weights were added to the original prosthetic legs in three conditions: 600. g added to the ankle, 600. g added at 10. cm distal to the prosthetic knee, and 300. g added to the ankle, and 300. g at 10. cm distal to the knee. For each prosthetic mass condition, the stride and step lengths, stepping speed, stance, swing... 

    Design of Artificial Retina Chip With Incident Light Based Stimulation and Supply

    , M.Sc. Thesis Sharif University of Technology Mohajeri, Roya (Author) ; Fardmanesh, Mehdi (Supervisor)
    Abstract
    Blindness is one of the destructive results of retinal diseases. Artificial retina is a device which can help blind people with AMD and RP diseases to restore their vision. Prevalent approaches to artificial retina use an external power supply and processor which the data and energy is transmitted to eye through an inductive link. Taking advantages of solar power, in this project we proposed a design which the required stimulation data and energy is produced internally so the patients don’t have to carry the processor and external power supply that is of major concern for them. This is the most important advantage of this device which doesn’t need any maintenance or battery either. In this... 

    Dynamics of a running below-knee prosthesis compared to those of a normal subject

    , Article Journal of Solid Mechanics ; Volume 5, Issue 2 , 2013 , Pages 152-160 ; 20083505 (ISSN) Mamaghani, A. E ; Zohoor, H ; Firoozbakhsh, K ; Hosseini, R ; Sharif University of Technology
    Islamic Azad University  2013
    Abstract
    The normal human running has been simulated by two-dimensional biped model with 7 segments. Series of normal running experiments were performed and data of ground reaction forces measured by force plate was analyzed and was fitted to some Fourier series. The model is capable to simulate running for different ages and weights at different running speeds. A proportional derivative control algorithm was employed to grant stabilization during each running step. For calculation of control algorithm coefficients, an optimization method was used which minimized cinematic differences between normal running model and that of the experimentally obtained from running cycle data. This yielded the... 

    Dynamic Modeling and Control of a Robotic Prosthetic Foot for Transfemoral Amputation

    , M.Sc. Thesis Sharif University of Technology Heidarzadeh Khoramabadi, Siamak (Author) ; Salarieh, Hassan (Supervisor) ; Alasty, Aria (Supervisor)
    Abstract
    The present research has dealt with the modeling and control of a robotic prosthetic foot for transfemoral amputees. In the beginning of this research, we have modeled the normal gait. In order to accomplish this modeling, we have chosen a 7-body segment skeletal model of the human body and derived the motion equations using Lagrangian equations. Then, we have developed a smooth contact model for the ground. After controlling normal gait, we have attempted to model and control the ankle and knee prosthesis. We assumed a rigid model for the ankle prosthesis and derived its dynamic equations. Then, we developed a robust model reference adaptive impedance control (RMRAIC) scheme based on the... 

    The argus-II retinal prosthesis implantation; from the global to local successful experience

    , Article Frontiers in Neuroscience ; Volume 12, Issue SEP , 2018 ; 16624548 (ISSN) Farvardin, M ; Afarid, M ; Attarzadeh, A ; Johari, M. K ; Mehryar, M ; Nowroozzadeh, M. H ; Rahat, F ; Peyvandi, H ; Farvardin, R ; Nami, M ; Sharif University of Technology
    Abstract
    Over the past few years, visual prostheses (namely, Argus II retinal implant) and gene therapy have obtained FDA approval in treating blindness resulting from retinitis pigmentosa. Compared to gene therapy; Argus II is less costly with a demonstrated favorable outcome, though the vision is yet artificial. To obtain better results, expectation counseling and preoperative retinal assessment are critical. The global experience with Argus II has enrolled no more than 300 cases so far. The first Argus II retinal prosthesis in Iran was successfully implanted in Shiraz (October 2017). To date, Argus II artificial retina is implanted in four patients in Iran. Beside successful surgery and... 

    Design and Construction of an Artificial Thumb Controlled by Command from the Index Finger

    , M.Sc. Thesis Sharif University of Technology Loghmani, Javad (Author) ; Salak Ghafari, Ali (Supervisor)
    Abstract
    This study provides preliminary work on the development of manual rehabilitation device for wearable and robotic manual applications. This work examines the motion of the fingers using the sensors. The developed mechanism is based on a combination of strain gauge sensors and a stepper motor, which forms the motion of the artificial thumb. In this thesis, the creation of an artificial thumb has been done with one degree of freedom, the movement and grabbing of lightweight objects. For grabbing objects, the command of controlling and keeping objects is performed through the IAR software and labVIEW software which is given to the stepper motor.This study describes the details of the work done... 

    Design optimization of an above-knee prosthesis based on the kinematics of gait

    , Article 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08, Vancouver, BC, 20 August 2008 through 25 August 2008 ; 2008 , Pages 4274-4277 ; 9781424418152 (ISBN) Pejhan, S ; Farahmand, F ; Parnianpour, M ; Sharif University of Technology
    2008
    Abstract
    A dynamic model of an above-knee prosthesis during the complete gait cycle was developed. The model was based on a two-dimensional multi-body mechanical system and included a hydraulic and an elastic controller for the knee and a kinematical driver controller for the prosthetic ankle. The equations of motion were driven using Lagrange method. Simulation of the foot contact was conducted using a two-point penetration contact model. The knee elastic and hydraulic controller units, the knee extension stop, and the kinematical driver controller of the ankle were represented by a spring and a dashpot, a nonlinear spring, and a torsional spring-damper within a standard prosthetic configuration.... 

    A Micromechanical Approach to the Fracture of Femoral Bone during Total Hip Arthroplasty: A Threshold for the Maximum Allowable Press-Fit

    , M.Sc. Thesis Sharif University of Technology Malekmotiei, Leila (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    The principle of micromechanics has been used to determine the maximum allowable press-fit for the hip stem during total hip arthroplasty. A 2D parametric solution has been presented. Bone and stem cross sections are modeled parametrically with respect to their geometry and mechanical properties. Surrounding soft tissue is also modeled and all the participating materials are considered as linear isotropic. Drucker-Prager fracture criterion is used to interpret the fracture phenomenon which is considered as both strain- and stress-state fracture. Considering presence of a thin layer of cancellous bone in the model caused a significant increase in results in comparison with previous numerical... 

    Design and Simulation of Manufacturing of Hip Prosthesis

    , M.Sc. Thesis Sharif University of Technology Ashtiani Araghi, Abbas (Author) ; Movahedi, Mohammad Reza (Supervisor)
    Abstract
    Nowadays, with a constant increase in life expectancy, joints pain and deficiencies have become a major problem and the use of prosthesis is increasing. One of the most important joint in human body is the hip joint which bear a major share of forces in daily activities. Hip joint is a cup-sphere joint with 3 degrees of freedom (DOF). Therefore, design and manufacturing of such prosthesis is very important. The objective of this thesis is to develop the know how for manufacturing of a standard hip prosthesis by hot forging of Ti6Al4V alloy. First a review of kinematics of bones and joints and forces on hip joint is presented, then the proper process for manufacturing of the hip prosthesis... 

    Design and Fabrication of a Robotic Prosthetic Finger

    , M.Sc. Thesis Sharif University of Technology Maskoot, Keyan (Author) ; Bagheri Shouraki, Saeed (Supervisor)
    Abstract
    Due to diversity in amputation possibilities, this thesis focuses on the specific case of ring finger amputation with some amount of stomp remaining. The goal is to design a robotic finger as a prosthetic, which its flexion and extension (position control) are instructed from an armband. The armband is equipped with 8 force sensors to detect volume variations in patient’s forearm. Its embedded microcontroller processes signals taken from these sensors, and using machine learning techniques (K-Nearest Regressor), decides on a specific angle for the finger. This angle value updates constantly, and using a flex sensor and a DC motor in finger, the desired flexion/extension is performed.... 

    Design for Fabrication of a Knee Prosthesis Wear Simulator

    , M.Sc. Thesis Sharif University of Technology Tahsili Seghale, Alireza (Author) ; Durali, Mohammad (Supervisor)
    Abstract
    Total knee replacement surgery is the most common joint replacement in the world. Considering the increasing rate of this procedure and costs and difficulties of the repeated operation, many efforts have been made to improve the performance and lifetime of implants. The Polyethylene component of the implant is the most prone component to fail due to wear. To evaluate new knee prosthesis designs, it is necessary to have a wear test simulator. Objective of this project is to detail design a knee prosthesis wear simulator according to ISO 14243 in order to investigate the performance of prosthesises in long term and under in-vivo conditions. During this project, studies have been made to get... 

    A novel stable robust adaptive impedance control scheme for ankle prostheses

    , Article 5th RSI International Conference on Robotics and Mechatronics, IcRoM 2017, 25 October 2017 through 27 October 2017 ; 2018 , Pages 63-68 ; 9781538657034 (ISBN) Heidarzadeh, S ; Sharifi, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    A stable robust adaptive impedance control strategy is introduced here as a model-based low-level control scheme for active ankle prostheses. The effects of amputee-prosthesis and prosthesis-environment interactions are included in the controller design. An interesting feature of the proposed controller is that only shank and ankle angles and angular velocities, and ground reaction forces are required to implement the control law. In other words, no feedback from amputee-prosthesis interaction forces and moment, global or local positions, and accelerations of amputated place is required. Using a Lyapunov analysis, exponential convergence characteristics of the proposed controller are proven.... 

    Design and fabrication of a new expandable transtibial liner with manual volume control: A prototype

    , Article Journal of Biomedical Physics and Engineering ; Volume 10, Issue 4 , 2020 , Pages 543-548 Nouri, M. J ; Aminian, G ; Farahmand, F ; Rahgozar, M ; Sharif University of Technology
    Shiraz University of Medical Sciences  2020
    Abstract
    Diurnal volume changes is one of the main factors influencing socket fit in trans-tibial prosthesis and causing pressure problem issues. Embedded bladder liners have been recently a potential approach to deal with this problem. The aim of this technical note was to introduce a new transtibial silicone liner designed based on hybrid socket theory. To make expandability in the liner, an integrated wax structure was constructed over the selected areas of the positive model and then removed after lamination process. In addition, a mechanical system with manual control was designed to fit the liner with the residual limb volume by pumping the water in or out of the liner through connec-tive... 

    A fuzzy sequential locomotion mode recognition system for lower limb prosthesis control

    , Article 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 2153-2158 ; 9781509059638 (ISBN) Shahmoradi, S ; Bagheri Shouraki, S ; Sharif University of Technology
    Abstract
    Control of powered lower limb prostheses has a locomotion mode-dependent structure which demands a pattern recognizer that can classify the current locomotion mode and also detect transitions between them in an appropriate time. In order to achieve this goal, this paper presents a Fuzzy sequential locomotion mode recognition system to classify daily locomotion modes including level- walking, stair climbing, slope walking, standing and sitting using low-cost mechanical sensors. Since these signals have a quasi-periodic nature, using sequential pattern recognition tools, such as Hidden Markov Model(HMM) improves the recognition performance considering they use sequences of information to make... 

    A novel robust model reference adaptive impedance control scheme for an active transtibial prosthesis

    , Article Robotica ; Volume 37, Issue 9 , 2019 , Pages 1562-1581 ; 02635747 (ISSN) Heidarzadeh, S ; Sharifi, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Cambridge University Press  2019
    Abstract
    In this paper, a novel robust model reference adaptive impedance control (RMRAIC) scheme is presented for an active transtibial ankle prosthesis. The controller makes the closed loop dynamics of the prosthesis similar to a reference impedance model and provides asymptotic tracking of the response trajectory of this impedance model. The interactions between human and prosthesis are taken into account by designing a second-order reference impedance model. The proposed controller is robust against parametric uncertainties in the nonlinear dynamic model of the prosthesis. Also, the controller has robustness against bounded uncertainties due to unavailable ground reaction forces and unmeasurable... 

    Dynamic Simulation of Running Human Normal and with Below-Knee Prosthesis

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Mamaghani, Ali (Author) ; Firoozbakhsh, Keykhosro (Supervisor) ; Zohoor, Hassan (Supervisor)
    Abstract
    Researches in the field of human gait have a lot of applications in medicine, ergonomics, sport science and technology. Lower limb prostheses design is one of the fields in which human gait is important. One of the best methods of gait analysis is to use analytical models. In this project, first, the normal human was simulated using a two-dimensional biped model with 7 segments, i.e., a HAT segment representing head, arms and trunk, and 6 segments representing thighs, shanks and feet of the two legs. In this model the foot-ground contact was is estimated using Taylor series after running experiment and it’s analysis which is expendable to people with different ages and different weight and... 

    Simulation of a Knee Joint Replacement During a Gait Cycle Using Finite Element Analysis and Verifying the Results by Experimental Knee Simulator

    , M.Sc. Thesis Sharif University of Technology Shirdel, Hadi (Author) ; Firoozbakhsh, Keikhosrow (Supervisor) ; Farahmand, Farzam (Supervisor) ; Narimani, Roya (Supervisor)
    Abstract
    In knee injuries that may not have the ability to improve and knee function is disturbed, usually total knee replacement surgery is performed. There are several ways in order to study the effect of different parameters and how the parameters affect the total knee disability, including removal from the patient body, laboratory studies and computer simulations. Study of damaged prosthesis from viewpoint of availability and laboratory ones from cost and duration of time encounter with problems, so the computer simulation have priority. In this project, a dynamic model of a total knee prosthesis during gait cycle has been developed with the help of finite element software. In this project,... 

    Modeling and Dynamic Analysis of a Laboratary Prototyped Rotary MR Damper using a Prosthetic Knee

    , Ph.D. Dissertation Sharif University of Technology Mousavi, Hamid (Author) ; Sayyadi, Hassan (Supervisor)
    Abstract
    Regaining biomechanical function, comfort and quality of every-day life is a prime consideration when designing prosthetic devices for amputees. The magnetorheological (MR) prosthetic knee, which is the subject of this study, is an example of such a device. The study presents a comprehensive and a combined MR device design and MR fluid design approach, aiming to advance the MR prosthetic knee. First, this study focuses on developing a new configuration on magnetorheological (MR) brake damper as prosthetic knee. The new configuration is a rotary damper using MR fluid with a single rotary disc will act as a brake while MR fluid is activated by magnetic field in different walking gait. The main... 

    Design for Fabrication, Fabrication and Calibration of a Knee Prosthesis Laxity and Stability Test Machine

    , M.Sc. Thesis Sharif University of Technology Nasiri Khonsari, Hassan (Author) ; Durali, Mohammad (Supervisor)
    Abstract
    In this project, conceptual and detailed designs of a knee prosthesis constraint testing machine were performed based on ASTM F1223-20 standard. Conceptual and detailed mechanical and electrical design of machine and parts were performed based on common engineering practice and standards. Parts were carefully manufactured and controlled for quality assurance. The machine was then assembled and checked for proof of performance. A plc program was written as machine software. A comprehensive user interface was coded on computer for performing various tests, which can command the machine and view the required data in a graphical environment. Finally, simple experiments were designed and... 

    Design and Manufacturing of Gradient Cellular Tibial Stem for Total Knee Replacement

    , M.Sc. Thesis Sharif University of Technology Taheri, Atiyeh (Author) ; Farahmand, Farzam (Supervisor) ; Bahrami Nasab, Marjan (Co-Supervisor)
    Abstract
    Loosening of uncemented tibial component is one the most common causes of total knee prosthesis failure which is a result of short-term factors such as instability and incomplete osseointegration as well as long-term factors such as peri-prosthetic stress shielding and bone atrophy. Porous cellular structures for tibial stem have been considered as a solution to this problem. This project is aimed to achieve an optimal gradient porous cellular design of tibial stem that in addition to sufficient mechanical strength, provides a perfect osseointegration and prevents bone resorption by incorporating appropriate porosity size, small micro-motion and favorable stress distribution on bone. A...