Loading...
Search for: proton-transport
0.007 seconds

    Mechanisms and kinetics of Thiotepa and tepa hydrolysis: DFT study

    , Article Journal of Molecular Modeling ; Volume 18, Issue 8 , 2012 , Pages 3563-3576 ; 16102940 (ISSN) Torabifard, H ; Fattahi, A ; Sharif University of Technology
    Springer  2012
    Abstract
    N,N′,N″-triethylenethiophosphoramide (Thiotepa) and its oxo analogue (Tepa) as the major metabolite are trifunctional alkylating agents with a broad spectrum of antitumor activity. In vivo and vitro studies show alkylation of DNA by Thiotepa and Tepa can follow two pathways, but it remains unclear which pathway represents the precise mechanism of action. In pathway 1, these agents are capable of forming cross-links with DNA molecules via two different mechanisms. In the first mechanism, the ring opening reaction is initiated by protonating the aziridine, which then becomes the primary target of nucleophilic attack by the N7-Guanine. The second one is a direct nucleophilic ring opening of... 

    Bonding, structural and thermodynamic analysis of dissociative adsorption of H3O+ ion onto calcite (10 1 ¯ 4) surface: CPMD and DFT calculations

    , Article Journal of Molecular Modeling ; Volume 23, Issue 12 , 2017 ; 16102940 (ISSN) Ghatee, M. H ; Koleini, M. M ; Sharif University of Technology
    Abstract
    We used density functional theory (DFT) and Car-Parrinello molecular dynamics (CPMD) simulation to investigate the adsorption and bond formation of hydronium ion (H3O+) onto a (10 1 ¯ 4) calcite surface. For surface coverage of 25% to 100%, the nature of H3O+ interaction was explored through electron density and energetics in the context of bond critical points. The adsorbate–adsorbent structure was studied by simulation of pair correlation function. The results revealed that dissociation into water molecule(s) and proton(s) complements H3O+ ion(s) adsorbtion. The H2O molecule adsorbs onto the surface via its O atom, and interacts with surface calcium in a closed-shell mode; the H+ ion makes... 

    Regioselective diversification of 2,1-borazaronaphthalenes: unlocking isosteric space via C-H activation

    , Article Journal of Organic Chemistry ; Volume 82, Issue 15 , 2017 , Pages 8072-8084 ; 00223263 (ISSN) Davies, G. H. M ; Jouffroy, M ; Sherafat, F ; Saeednia, B ; Howshall, C ; Molander, G. A ; Sharif University of Technology
    Abstract
    Methods for the regioselective C-H borylation and subsequent cross-coupling of the 2,1-borazaronaphthalene core are reported. Azaborines are dependent on B-N/C=C isosterism when employed in strategies for developing diverse heterocyclic scaffolds. Although 2,1-borazaronaphthalene is closely related to naphthalene in terms of structure, the argument is made that the former has electronic similarities to indole. Based on that premise, iridium-mediated C-H activation has enabled facile installation of a versatile, nucleophilic coupling handle at a previously inaccessible site of 2,1-borazaronaphthalenes. A variety of substituted 2,1-borazaronaphthalene cores can be successfully borylated and... 

    Theoretical aspects of the enhancement of metal binding affinity by intramolecular hydrogen bonding and modulating p: K a values

    , Article New Journal of Chemistry ; Volume 41, Issue 24 , 2017 , Pages 15110-15119 ; 11440546 (ISSN) Motahari, A ; Fattahi, A ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Polyols were used as model ligands for Mg2+, Ca2+, and Zn2+ complexes to study the role of the hydrogen bond network on the metal binding affinity and modulation of successive pKa values using density functional theory. The results confirm that the acidity of polyols dramatically increases upon metal complexation in the order Zn2+ > Mg2+ > Ca2+. For example, the three H-site positions in the hydroxyl groups of the heptaol, bound to Zn2+, are 11.2, 29.9, and 30.9 pKa units (in methanol) more acidic than those of pure heptaol. This acidity enhancement leads to making polyols as good ligands toward complexation. For instance, the formation constants of the heptaol in the presence of Zn2+, Mg2+,... 

    Single-centered hydrogen-bonded enhanced acidity (SHEA) acids: a new class of Bronsted acids

    , Article Journal of the American Chemical Society ; Volume 131, Issue 46 , 2009 , Pages 16984-16988 ; 00027863 (ISSN) Tian, Z ; Fattahi, A ; Lis, L ; Kass, S. R ; Sharif University of Technology
    2009
    Abstract
    Hydrogen bonds are the dominant motif for organizing the three-dimensional structures of biomolecules such as carbohydrates, nucleic acids, and proteins, and serve as templates for proton transfer reactions. Computations, gas-phase acidity measurements, and pKa determinations in dimethyl sulfoxide on a series of polyols indicate that multiple hydrogen bonds to a single charged center lead to greatly enhanced acidities. A new class of Brønsted acids, consequently, is proposed. © 2009 American Chemical Society  

    Complete steric exclusion of ions and proton transport through confined monolayer water

    , Article Science ; Volume 363, Issue 6423 , 2019 , Pages 145-148 ; 00368075 (ISSN) Gopinadhan, K ; Hu, S ; Esfandiar, A ; Lozada Hidalgo, M ; Wang, F. C ; Yang, Q ; Tyurnina, A. V ; Keerthi, A ; Radha, B ; Geim, A. K ; Sharif University of Technology
    American Association for the Advancement of Science  2019
    Abstract
    It has long been an aspirational goal to create artificial structures that allow fast permeation of water but reject even the smallest hydrated ions, replicating the feat achieved by nature in protein channels (e.g., aquaporins). Despite recent progress in creating nanoscale pores and capillaries, these structures still remain distinctly larger than protein channels. We report capillaries made by effectively extracting one atomic plane from bulk crystals, which leaves a two-dimensional slit of a few angstroms in height. Water moves through these capillaries with little resistance, whereas no permeation could be detected even for such small ions as Na + and Cl − . Only protons (H + ) can... 

    Density functional theory studies of oxygen and carbonate binding to a dicopper patellamide complex

    , Article Journal of Inorganic Biochemistry ; Volume 102, Issue 12 , 2008 , Pages 2171-2178 ; 01620134 (ISSN) Latifi, R ; Bagherzadeh, M ; Milne, B. F ; Jaspars, M ; de Visser, S. P ; Sharif University of Technology
    2008
    Abstract
    In this work we present results of density functional theory (DFT) calculations on dicopper patellamides and their affinity for molecular oxygen and carbonate. Patellamides are cyclic octapeptides that are produced by a cyanobacterium, and may show promise as therapeutics. Thus, carbonate binding to a dicopper patellamide center gives a stable cyclic octapeptide with a twist of almost 90°. The system exists in close-lying open-shell singlet and triplet spin states with two unpaired electrons in orthogonal σ* orbitals on each metal center. Subsequently, we replaced carbonate with dioxygen and found a stable Cu2(μ-O)2 diamond shaped patellamide core. In this structure the original dioxygen... 

    New gasochromic system: Nanoparticles in liquid

    , Article Journal of Nanoparticle Research ; Volume 14, Issue 4 , March , 2012 ; 13880764 (ISSN) Ranjbar, M ; Kalhori, H ; Mahdavi, S. M ; Zad, A. I ; Sharif University of Technology
    2012
    Abstract
    In this study, WO 3 nanocrystallites were first produced by laser ablation of W target in deionised water. To synthesize palladium, a PdCl 2 solution (0.2 g/L) was added to the liquid. Transmission electron microscope revealed successful synthesis of tungsten oxide nanocrystallites along with the production of Pd and core-shell Pd/WO3 nanoparticles. Gasochromic behavior was examined by hydrogen bubbling into Pd/WO 3 liquid in which a transition to blue absorbing state was observed. Optical absorption spectra of the colored liquid represented different sharp small polaron absorbing peaks below 3 eV and the peaks intensity was observed to be varied with Pd:WO 3 ratio. Time variations of... 

    Anodic behavior of clioquinol at a glassy carbon electrode

    , Article Bioelectrochemistry ; Volume 80, Issue 2 , 2011 , Pages 175-181 ; 15675394 (ISSN) Ghalkhani, M ; Fernandes, I. P. G ; Oliveira, S. C. B ; Shahrokhian, S ; Oliveira-Brett, A. M ; Sharif University of Technology
    2011
    Abstract
    Clioquinol is an antifungal, antiprotozoal and an Alzheimer's disease drug with cytotoxic activity toward human cancer cells. The electrochemical behavior of clioquinol and its oxidation product was studied using cyclic, differential pulse and square-wave voltammetry over a wide pH range on a glassy carbon electrode. The results revealed that the oxidation of clioquinol is an irreversible pH-dependent process that proceeds with the transfer of one electron and one proton in an adsorption-controlled mechanism and results in the formation of a main oxidation product, which adsorbs very strongly on the glassy carbon surface. The charge transfer coefficient was calculated as 0.64. The adsorbed...