Loading...
Search for: pseudo-second-order-model
0.004 seconds

    Spotlight on kinetic and equilibrium adsorption of a new surfactant onto sandstone minerals: A comparative study

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 50 , May , 2015 , Pages 12-23 ; ISSN: 18761070 Arabloo, M ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    Abstract
    This paper presents a state of the art review of adsorption models for a new plant-based surfactant adsorption onto sandstone minerals. The adsorption data at both kinetic and equilibrium modes were obtained from batch experiments. Four adsorption kinetic models, five two-parameter, and six three-parameter equilibrium models were used for interpretation of the obtained data. Among the two and three-parameter isotherm models applied, the Jovanovic and the Khan isotherms showed the best fit, respectively. And the pseudo-second order model presented a better fit than other kinetic models. Finally, a computer-based modeling approach was developed and used for predicting the kinetics of... 

    Spotlight on kinetic and equilibrium adsorption of a new surfactant onto sandstone minerals: A comparative study

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 50 , May , 2015 , Pages 12-23 ; 18761070 (ISSN) Arabloo, M ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2015
    Abstract
    This paper presents a state of the art review of adsorption models for a new plant-based surfactant adsorption onto sandstone minerals. The adsorption data at both kinetic and equilibrium modes were obtained from batch experiments. Four adsorption kinetic models, five two-parameter, and six three-parameter equilibrium models were used for interpretation of the obtained data. Among the two and three-parameter isotherm models applied, the Jovanovic and the Khan isotherms showed the best fit, respectively. And the pseudo-second order model presented a better fit than other kinetic models. Finally, a computer-based modeling approach was developed and used for predicting the kinetics of... 

    Adsorption of sodium dodecyl benzene sulfonate onto carbonate rock: Kinetics, equilibrium and mechanistic study

    , Article Journal of Dispersion Science and Technology ; 2017 , Pages 1-13 ; 01932691 (ISSN) Hemmati, N ; Tabzar, A ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    In this study, kinetics, equilibrium, and mechanisms of SDBS adsorption onto carbonate rock in presence/absence of alkaline/electrolyte, which is not well discussed in the available literature, is analyzed through batch experiments. Analysis of kinetic data showed that adsorption rate of SDBS onto carbonate is controlled by both boundary layer and intraparticle diffusion, also adsorption kinetics meets pseudo second-order model. The coefficient of kinetic model is a linear function of initial and equilibrium concentrations. The adsorption isotherm experiences four distinct regions, with a rising trend in the first regions until reaching to a maximum after which decreases slightly, as the... 

    Adsorption of sodium dodecyl benzene sulfonate onto carbonate rock: Kinetics, equilibrium and mechanistic study

    , Article Journal of Dispersion Science and Technology ; Volume 39, Issue 5 , 2018 , Pages 687-699 ; 01932691 (ISSN) Hemmati, N ; Tabzar, A ; Ghazanfari, M. H ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    In this study, kinetics, equilibrium, and mechanisms of SDBS adsorption onto carbonate rock in presence/absence of alkaline/electrolyte, which is not well discussed in the available literature, is analyzed through batch experiments. Analysis of kinetic data showed that adsorption rate of SDBS onto carbonate is controlled by both boundary layer and intraparticle diffusion, also adsorption kinetics meets pseudo second-order model. The coefficient of kinetic model is a linear function of initial and equilibrium concentrations. The adsorption isotherm experiences four distinct regions, with a rising trend in the first regions until reaching to a maximum after which decreases slightly, as the... 

    Thermally oxidized Nanodiamond: an effective sorbent for separation of methotrexate from aqueous media: synthesis, characterization, in vivo and in vitro biocompatibility study

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 29, Issue 3 , 2019 , Pages 701-709 ; 15741443 (ISSN) Zamani, M ; Aghajanzadeh, M ; Molavi, H ; Danafar, H ; Shojaei, A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    In the present study the effect of nanodiamond (ND) on the adsorption capacity of Drug has been investigated. Thermal oxidation nanodiamond (OND) was used as adsorbents for Methotrexate adsorption. The surface properties of NDs were studied by Fourier transform infrared spectroscopy and zeta potential. It was determined that thermal oxidation changed the surface properties of ND, including increase the amount of carboxylic acid groups and decreasing the zeta potential of ND by increasing the thermal oxidation time. The adsorption experiments showed that untreated ND (UND) has large adsorption capacity and fast adsorption kinetic for methotrexate (MTX). These results suggest that the... 

    Adsorption of silica nanoparticles onto calcite: Equilibrium, kinetic, thermodynamic and DLVO analysis

    , Article Chemical Engineering Journal ; Volume 281 , December , 2015 , Pages 334-344 ; 13858947 (ISSN) Dehghan Monfared, A ; Ghazanfari, M. H ; Jamialahmadi, M ; Helalizadeh, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Recently, application of silica nanoparticles (SNP) for enhancing oil recovery during water flooding has been much attended. However, understanding how rock and nanoparticles (NP) interacts through adsorption onto the carbonate reservoir rocks is not well discussed. In this work, adsorption behavior of SNP onto the calcite had been characterized, through kinetic, equilibrium, thermodynamics and electrokinetic studies as well as interaction energy analysis by DLVO theory. Also, field emission scanning electron microscopy (FESEM) was utilized to visualize the adsorption process. It had been found that kinetic behavior of SNP-calcite system followed the pseudo-second order model. Equilibrium... 

    Chemically modified organic/inorganic nanoporous composite particles for the adsorption of reactive black 5 from aqueous solution

    , Article Reactive and Functional Polymers ; Volume 86 , 2015 , Pages 7-15 ; 13815148 (ISSN) Nematollahzadeh, A ; Shojaei, A ; Karimi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In the present work, we report a chemically modified polyacrylamide/silica nanoporous composite adsorbent for the removal of reactive black 5 (RB5) azo dye from aqueous solutions. The composite adsorbent was synthesized in a packed bed and modified by ethylenediamine (EDA). The adsorbent was characterized by Fourier transformation infrared (FT-IR), thermogravimetric analysis (TGA), thermoporometry, Brunauer, Emmett and Teller (BET) method and scanning electron microscopy (SEM). Mechanical stability of the adsorbent was examined in a packed bed by following the back-pressure of the column. Pore diameter of the composite adsorbent in dry and wet states was estimated to be about 18.71 nm and... 

    Adsorptive behavior of an amberlite anion exchanger resin for uranium (VI) sorption in the presence of sulfate anions

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 29, Issue 2 , 2016 , Pages 170-175 ; 1728144X (ISSN) Kowsari, M. R ; Sepehrian, H ; Fasihi, J ; Arabieh, M ; Mahani, M ; Sharif University of Technology
    Materials and Energy Research Center 
    Abstract
    Uranium (VI) sorption using an anionic exchanger resin, namely Amberlite IRA910, in the presence of sulfate anions was the subject of current study. Batch sorption experiments were carried out to evaluate the influence of operational parameters such as pH, contact time, initial concentration and existence of various anions (including phosphate, sulfate, chloride, fluoride, and nitrate) in the solution on Amberlite IRA910 sorption behavior. Experiments revealed that uranium adsorption was fulfiled at pH>3 and 50 min to amount of 80%. Kinetics study revealed that the pseudo-second-order model showed better curve-fitting regression of the experimental data than the pseudo-first-order one.... 

    Amino functionalized hierarchically produced porous polyacrylamide microspheres for the removal of chromium(VI) from aqueous solution

    , Article Journal of Porous Materials ; Volume 24, Issue 6 , 2017 , Pages 1705-1715 ; 13802224 (ISSN) Karimi, M ; Nematollahzadeh, A ; Shojaei, A ; Sharif University of Technology
    Abstract
    Porous silica microspheres were used as hard template to produce porous polyacrylamide microspheres. The microspheres were modified with ethylenediamine and used for the removal of hexavalent chromium [Cr(VI)] from aqueous solution. Scanning electron microscopy, thermogravimetry analysis, and Fourier transform infrared spectroscopy were utilized to characterize the adsorbent. Adsorption of Cr(VI) was conducted in batch and dynamic modes, and effect of various parameters including solution pH, adsorbent dose, initial concentration of Cr(VI) and agitation time on the adsorption process was studied. The optimum pH for the maximum adsorption (124 mg Cr(VI)/g dry polymer) was found to be 3.... 

    Methylene blue removal using modified celery (Apium graveolens) as a low-cost biosorbent in batch mode: Kinetic, equilibrium, and thermodynamic studies

    , Article Journal of Molecular Structure ; Volume 1173 , 2018 , Pages 541-551 ; 00222860 (ISSN) Mohebali, S ; Bastani, D ; Shayesteh, H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Celery residue modified with H2SO4 was utilized as a low-cost adsorbent for elimination of methylene blue cationic dye from aqueous solution in batch adsorption process. The adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). The efficacy of dye removal of the modified celery residue (MCR) was verifying by changing adsorbent dose, contact time, pH, initial dye concentration, and temperature. The isotherm models analysis shows that the experimental data can be better demonstrated by Freundlich isotherm model. In order to evaluate the best fit isotherm, three error analysis methods (χ2, ARE and MPSD) as well as correlation... 

    Preparation of activated carbon dots from sugarcane bagasse for naphthalene removal from aqueous solutions

    , Article Separation Science and Technology (Philadelphia) ; Volume 53, Issue 16 , 2018 , Pages 2536-2549 ; 01496395 (ISSN) Eslami, A ; Borghei, S. M ; Rashidi, A ; Takdastan, A ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    The synthesis of cheap and environmental friendly adsorbent from residual sugarcane bagasse was done for the removal of naphthalene from aqueous solution. The activated carbon dot was obtained by KOH chemical activation of carbon dots. The characteristics of carbon dots and activated carbon dots were determined using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and thermogravimetric analysis. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e., initial pH, initial naphthalene concentration, adsorbent dosage, and contact time. The kinetic data showed better fit to the... 

    Evaluation of UiO-66 metal organic framework as an effective sorbent for curcumin's overdose

    , Article Applied Organometallic Chemistry ; Volume 32, Issue 4 , 2018 ; 02682605 (ISSN) Molavi, H ; Zamani, M ; Aghajanzadeh, M ; Kheiri Manjili, H ; Danafar, H ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Metal organic frameworks (MOFs) UiO-66 (UiO stands for University of Oslo) and NH2-UiO-66 were prepared and characterized as sorbent (antidotal agents) for curcumin (CUR) adsorption. The structure of products were characterized by X-ray powder diffraction (XRD), Field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and N2 adsorption–desorption measurements. FESEM showed NH2-UiO-66 displayed symmetrical crystals with triangular base pyramid morphology, with the particle size around 100 nm and uniform size distribution. Adsorption capacities of CUR/MOFs with different mass ratios... 

    Kinetics and adsorptive study of organic dye removal using water-stable nanoscale metal organic frameworks

    , Article Materials Chemistry and Physics ; Volume 233 , 2019 , Pages 267-275 ; 02540584 (ISSN) Hasanzadeh, M ; Simchi, A ; Shahriyari Far, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Kinetics and isotherms of adsorption behavior of nanoscale Zr-based metal-organic framework for the removal of three organic dyes including acidic, direct and basic ones from aqueous solutions were studied by sorption models. Nanocube-shaped UiO-66 particles with an average edge length of 215 nm, specific surface area of 1215 m2/g, total pore volume of 0.58 cm3/g, and average pore diameter of 1.8 nm were prepared by solvothermal methods. Analyzing of the equilibrium isotherms indicates that direct dye removal is best fitted with the Langmuir isotherm. Study of the adsorption kinetics also determines that direct dye adsorption follows pseudo-first-order model (R2=0.99). The kinetics of basic... 

    Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Ahmadipouya, S ; Heidarian Haris, M ; Ahmadijokani, F ; Jarahiyan, A ; Molavi, H ; Matloubi Moghaddam, F ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Human society is becoming more intransigent on removing organic dyes from polluted water before discharging to the environment. To fulfill this goal, a magnetic metal-organic framework adsorbent based on functionalized magnetic Fe3O4 nanoparticles and highly water stable UiO-66 with high porosity and sensitivity to the external magnetic field was designed and synthesized via an easy step-by-step self-assembly technique. The synthesized adsorbent magnetic nanoparticles (Fe3O4@UiO-66) were applied to remove organic dyes, i.e., methyl orange (MO) and methylene blue (MB), from a contaminated aqueous solution. The experiments displayed that magnetic Fe3O4@UiO-66 has good adsorption uptake for MO... 

    Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Ahmadipouya, S ; Heidarian Haris, M ; Ahmadijokani, F ; Jarahiyan, A ; Molavi, H ; Matloubi Moghaddam, F ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Human society is becoming more intransigent on removing organic dyes from polluted water before discharging to the environment. To fulfill this goal, a magnetic metal-organic framework adsorbent based on functionalized magnetic Fe3O4 nanoparticles and highly water stable UiO-66 with high porosity and sensitivity to the external magnetic field was designed and synthesized via an easy step-by-step self-assembly technique. The synthesized adsorbent magnetic nanoparticles (Fe3O4@UiO-66) were applied to remove organic dyes, i.e., methyl orange (MO) and methylene blue (MB), from a contaminated aqueous solution. The experiments displayed that magnetic Fe3O4@UiO-66 has good adsorption uptake for MO... 

    PPI-dendrimer-functionalized magnetic metal-organic framework (fe3o4@mof@ppi) with high adsorption capacity for sustainable wastewater treatment

    , Article ACS Applied Materials and Interfaces ; Volume 12, Issue 22 , 2020 , Pages 25294-25303 Shahriyari Far, H ; Hasanzadeh, M ; Nashtaei, M. S ; Rabbani, M ; Haji, A ; Hadavi Moghadam, B ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    Herein, a magnetic zirconium-based metal-organic framework nanocomposite was synthesized by a simple solvothermal method and used as an adsorbent for the removal of direct and acid dyes from aqueous solution. To enhance its adsorption performance, poly(propyleneimine) dendrimer was used to functionalize the as-synthesized magnetic porous nanocomposite. The dendrimer-functionalized magnetic nanocomposite was characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption/desorption isotherms, and vibration sample magnetometer. The obtained results revealed the successful synthesis and functionalization of the... 

    Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF: Experimental and DFT study

    , Article Journal of Molecular Liquids ; Volume 318 , 2020 Mirzaee Valadi, F ; Ekramipooya, A ; Gholami, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    La-MOF-NH2@Fe3O4 (magnetic-MOF) was used as an efficient, ultrafast, and selective adsorbent for the separation of Congo Red (CR) with 92.02% removal after 2 min. The magnetic-MOF was identified by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) surface area, Zeta Potential analysis, analysis of the magnetic hysteresis, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS). Kinetics, isotherms, the effect of pH, thermodynamic, and selectivity of CR adsorption were investigated. The results confirmed that the adsorption kinetics complied with the pseudo-second-order model. The...