Loading...
Search for: pull-out
0.005 seconds

    Prediction of the failure mode of automotive steels resistance spot welds

    , Article Science and Technology of Welding and Joining ; Volume 25, Issue 6 , 2020 , Pages 511-517 Sheikhi, M ; Jaderian, S ; Mazaheri, Y ; Pouranvari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    In this study, the critical nugget size, at which the failure state in tensile shear test changed from the interfacial failure mode to the pull-out failure one, was estimated as a function of nugget and base metal hardness. The proposed approach could address the effect of various parameters involved in resistance spot welding process, such as sheet thickness, base metal chemical composition and physical properties of electrodes and sheets. The reliability of the present model was evaluated using independent experimental results. Based on the obtained results, the effect of steel composition on critical nugget diameter was found to be more important, especially for the sheets thicker than... 

    FE modelling of mechanical interaction of lugged frp rods with concrete, comparison between experiment and simulation

    , Article Advanced Polymer Composites for Structural Applications in Construction: ACIC 2004 ; 2004 , Pages 509-516 ; 9781845690649 (ISBN); 9781855737365 (ISBN) Khoei, A. R ; Irannejad, H. R ; Sharif University of Technology
    Elsevier Inc  2004
    Abstract
    The main objective of this paper is to present a numerical simulation of mechanical interaction (bond mechanism) of lugged FRP rods with concrete. A finite element analysis is performed and the major causes of bond in lugged rod's interface with concrete are summarized. The concept of ascending and descending behavior of a rib under pull-out load is discussed. A simple procedure is employed to model the crack formation and propagation in the concrete block below the rib. Details and general aspects of model are described and numerical results are compared with experiments. Finally, it has been concluded that the proposed model can be effectively used for the simulation of bond behavior of... 

    Strength assessment and bonding study of aluminum short fiber-reinforced gypsum composites

    , Article International Journal of Damage Mechanics ; Volume 21, Issue 1 , January , 2012 , Pages 129-149 ; 10567895 (ISSN) Mohandesi, J. A ; Sangghaleh, A ; Nazari, A ; Sharif University of Technology
    2012
    Abstract
    In this study, tensile strength of gypsum-based composite with aluminum fibers up to 15 vol.% was studied. To increase the interfacial bond strength between fibers and matrix, aluminum fibers were anodized under different conditions. Single fiber pull-out tests were carried out to investigate the bond strength. The interface was examined by scanning electron microscope. The ability of the composites to withstand longitudinal tensile load was also studied by tensile tests of dog bone-shaped, randomly oriented fiber-reinforced gypsum. By the introduction of aluminum fibers in gypsum as a randomly oriented composite, considerable increment in the strength is achieved and the toughness of the... 

    Performance of glued-in rod timber joints under seawater and UV exposure cycles

    , Article Construction and Building Materials ; Volume 322 , 2022 ; 09500618 (ISSN) Shekarchi, M ; Shakiba, M ; Yekrangnia, M ; Tannert, T ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Timber joints with glued-in rod connections provide an interesting technical solution for numerous structural applications, also under harsh environmental conditions; yet little research is available on this topic. This paper experimentally investigated the effect of exposure to seawater wetting/drying cycles and seawater wetting/drying plus UV radiation cycles on the pull-out performance of glued-in rod timber connections. Three rod diameters, three anchorage lengths, and four exposures were considered, leading to manufacturing and testing a total of 189 specimens. The quasi-static monotonic pull-out resistance of joints was a function of rod diameter and anchorage length as well as... 

    Experiments and probabilistic models of bond strength between GFRP bar and different types of concrete under aggressive environments

    , Article Construction and Building Materials ; Volume 148 , 2017 , Pages 429-443 ; 09500618 (ISSN) Bazli, M ; Ashrafi, H ; Vatani Oskouei, A ; Sharif University of Technology
    Abstract
    Bond durability of FRP bars and concrete is an important issue to the overall integrity and long-term performance of a strengthening structure. This paper examines the bond durability of GFRP bars embedded in different types of concrete (Normal, self-compacting, light weight, and high strength) exposed to aggressive environments, namely, sea water, alkaline, and acid. A total of 132 specimens were tested in direct pull-out. The development lengths of both control and conditioned specimens were obtained and compared to the current standards. The results revealed bond strength reductions of 0–21% for the light weight, 1–16% for the normal, 5–9% for the high strength, and 4–12% for the... 

    Effect of seawater on pull-out behavior of glued-in single rods set parallel to the grain of timber joints

    , Article Construction and Building Materials ; Volume 222 , 2019 , Pages 342-357 ; 09500618 (ISSN) Shekarchi, M ; Majdabadi Farahani, E ; Vatani Oskouei, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper experimentally investigates the effects of seawater on pull-out behavior of single rods glued in timber parallel to grain. Considering different rod diameters (6, 8, 10 mm), slenderness ratios (7.5, 10, 15), rebar materials (steel and GFRP), and immersion time in seawater (0, 10, 20, 30, 60, 90 days), 324 specimens were tested. Mean strength reduction about 39 and 55 percent was observed for 90-day immersed joints constructed with GFRP and steel rebars, respectively. Rebar diameter and slenderness ratio significantly influenced ultimate loads, and dominant failure mode was at adhesive/timber interface. Finally, two novel strength models were developed empirically. © 2019 Elsevier... 

    A pathway to produce strong and tough martensitic stainless steels resistance spot welds

    , Article Science and Technology of Welding and Joining ; Volume 24, Issue 3 , 2019 , Pages 185-192 ; 13621718 (ISSN) Aghajani, H ; Pouranvari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Martensitic stainless steel (MSS) resistance spot welds are prone to quasi-cleavage interfacial failure with very low energy absorption capability due to formation of hard and brittle carbon and chromium rich martensite in the fusion zone (FZ). In this work, a new pathway is proposed to enhance strength/toughness of the MSS resistance spot welds based on modification of the FZ composition/microstructure via introducing a nickel interlayer. This altered the FZ microstructure from dual phase microstructure of martensite and δ-ferrite to austenitic microstructure with finely dispersed ultra-fine chromium rich carbides. Formation of a tough predominately austenitic microstructure in the FZ... 

    Comparison of mechanical properties in interference screw fixation technique and organic anterior cruciate ligament reconstruction method: a biomechanical study

    , Article BMC Musculoskeletal Disorders ; Volume 22, Issue 1 , 2021 ; 14712474 (ISSN) Borjali, A ; Nourani, A ; Moeinnia, H ; Mohseni, M ; Korani, H ; Ghias, N ; Chizari, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Bone and Site Hold Tendon Inside (BASHTI) technique is an organic implant-less technique for anterior cruciate ligament (ACL) reconstruction with some clinical advantages, such as speeding up the healing process, over implantable techniques. The study aims to compare the mechanical properties of BASHTI technique with the conventional interference screw technique. Methods: To investigate the mechanical properties, 20 in-vitro experimental tests were conducted. Synthetic dummy bone, along with fresh digital bovine tendons, as a graft, were used for experiments. Three loading steps were applied to all specimens, including a preconditioning, a main cyclic, and a pull-out loading.... 

    Analytical modeling of strength in randomly oriented PP and PPTA short fiber reinforced gypsum composites

    , Article Computational Materials Science ; Volume 50, Issue 5 , 2011 , Pages 1619-1624 ; 09270256 (ISSN) Mohandesi, J. A ; Sangghaleh, A ; Nazari, A ; Pourjavad, N ; Sharif University of Technology
    Abstract
    Fiber reinforced gypsum are prevalent building materials in which short fibers with high tensile strength are embedded into a gypsum matrix to produce supplemental strong and lightweight construction materials. Due to confrontation to a rising risk of death and economic disaster in earthquake-prone areas, quake-resistant materials and structures should be employed for building constructions. Gypsum based composites as a unique candidate for this purpose reduce the risks and produce much confident construction materials for residential buildings. In this work tensile strength of gypsum composites with different volume fraction of polypropylene (PP) and poly-paraphenylene terephthalamide... 

    Pull-out Strength Test Simulation and Stability Study of a Patient-Specific Drill Guide Template of Thoracic Pedicle Screw Placement for Patients with Spinal Deformity Using Finite Element Analysis

    , M.Sc. Thesis Sharif University of Technology Hosseini, Fahimeh (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    We have recently designed/fabricated novel bilateral vertebra- and patient-specific drill guides for pedicle screw (PS) placements and tested their accuracy for both nondeformed and deformed thoracic spines. PS placement deviations from their preplanned positions significantly reduced when guide template were used; the success rate improved from ~72% (freehand placements) to 94% (guided placements). In the present study, we aim to use finite element (FE) analyses to evaluate the pull-out strength of these PSs inserted via either the freehand technique or our drill-guide templates. Two 3D-printed T1-T12 thoracic models of a severe scoliosis patient with a 47° thoracic dextro-scoliotic curve... 

    Welding metallurgy of martensitic advanced high strength steels during resistance spot welding

    , Article Science and Technology of Welding and Joining ; Volume 22, Issue 4 , 2017 , Pages 327-335 ; 13621718 (ISSN) Tamizi, M ; Pouranvari, M ; Movahedi, M ; Sharif University of Technology
    Abstract
    The paper addresses the process–microstructure–performance relationships in resistance spot welding of a martensitic advanced high strength steel. Significant softening was observed in the heat affected zone (HAZ) due to allotriomorphic ferrite formation in the inter-critical HAZ and tempering of martensite in sub-critical HAZ (SCHAZ), with the latter plays more important role in mechanical properties of the spot welds. The strain concentration associated with the HAZ softening promotes initiation of pullout failure from the soft SCHAZ. While, the peak load in the interfacial failure mode is governed by the fusion zone size, that of the pullout mode is significantly affected by the HAZ... 

    Fracture toughness of martensitic stainless steel resistance spot welds

    , Article Materials Science and Engineering A ; Volume 680 , 2017 , Pages 97-107 ; 09215093 (ISSN) Pouranvari, M ; Sharif University of Technology
    Abstract
    The paper is focused on the strength and fracture toughness of AISI420 martensitic stainless steel resistance spot welds under the tensile-shear loading. The failure behavior of AISI420 spot welds was featured by quasi-cleavage interfacial failure with low load bearing capacity and weak energy absorption capability which was a function of the weld fusion microstructure, predominately carbon and chromium rich martensite plus δ-ferrite. Fracture toughness of the fusion zone proved to be the most important factor controlling the peak load of the spot welds made on AISI420 failed in interfacial mode. A geometry-independent fracture toughness of the weld nugget (c.a. 23 MPam0.5) was determined... 

    Improved adhesion of NiTi wire to silicone matrix for smart composite medical applications

    , Article Materials and Design ; Volume 30, Issue 9 , 2009 , Pages 3667-3672 ; 02641275 (ISSN) Sadrnezhaad, Kh ; Hassanzadeh Nemati, N ; Bagheri, R ; Sharif University of Technology
    2009
    Abstract
    Recent uses of intelligent composites in biomedical appliances aggrandize the necessity of bonding-strength improvement in NiTi/silicone matrix interface. SEM micrographs and pull-out tests are employed to determine the strength of the NiTi/silicone bonds in a flexible composite piece. Greater adhesion strengths are obtained due to the presence of thin oxide layer, surface roughness and frictional forces between the embedded-wires and the contacting phase. Effect of curing treatment on phase transformation temperatures of the wires is determined by electrical resistivity (ER) measurements. Results show that the curing treatment shifts the transition points of the wires towards higher... 

    Effects of plate contouring quality on the biomechanical performance of high tibial osteotomy fixation: A parametric finite element study

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 236, Issue 3 , 2022 , Pages 356-366 ; 09544119 (ISSN) Hayatbakhsh, Z ; Farahmand, F ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Locking plates have threaded holes, in which threaded-head screws are affixed. Hence, they do not need to be in intimate contact with underlying bone to provide fixation. There are, however, reports that a large distance between the plate and the bone might cause clinical complications such as delayed union or nonunion, screw pull out, and screw and plate breakage. Considering the diversity in the capabilities and costs of different plate customization techniques, the purpose of this study was to investigate the effect of the plate contouring quality on the biomechanical performance of high tibial osteotomy (HTO) fixation. A finite element model of proximal tibia was developed in Abaqus,... 

    Effect of insertion process on biceps tendon reconstruction in BASHTI technique: An in-vitro study

    , Article Scientia Iranica ; Volume 29, Issue 3 , 2022 , Pages 1265-1275 ; 10263098 (ISSN) Mohseni, M ; Nourani, A ; Ghias, N ; Borjali, A ; Chizari, M ; Sharif University of Technology
    Sharif University of Technology  2022
    Abstract
    Bone And Site Hold Tendon Inside (BASHTI) implant-less technique is proposed as an alternative to conventional tendon repair methods. This study aims to evaluate the strength of this technique under biceps loading conditions with different xation strategies. Twelve specimens with bovine tendons and Sawbones were constructed using two different insertion methods; in Group 1, 4 samples were prepared using a hand-hammer with a hitting frequency of 300 Beats Per Minute (BPM), while Group 2 included eight specimens with insertion using an auto-hammer applying a frequency of 3600 BPM. Both of the groups were tested under cyclic loading, followed by a pull-out until the failure. All the samples... 

    Early post-operative performance of an anatomically designed hybrid thread interference screw for ACL reconstruction: A comparative study

    , Article Journal of Biomechanics ; Volume 135 , 2022 ; 00219290 (ISSN) Daneshvarhashjin, N ; Chizari, M ; Javad Mortazavi, S. M ; Rouhi, G ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Although the anterior cruciate ligament (ACL) reconstruction using interference screw is a well-accepted surgical procedure, patients still suffer graft failure in the initial rehabilitation phase. Graft fixation stability of a newly designed anatomical hybrid thread tapered interference screw (AHTTIS) was compared with a conventional standard one (CSIS) by conducting in-vitro mechanical tests. According to the CSIS manufacturer's instruction, eight tapered bone tunnels, matching AHTTIS geometry, and eight straight cylindrical tunnels were drilled in artificial bone blocks. Bovine tendon grafts were fixed using AHTTIS and CSIS in their corresponding bone tunnels. Each graft was subjected to...