Loading...
Search for: pva
0.005 seconds
Total 21 records

    Effect of silica nanoparticles on carbon dioxide separation performances of PVA/PEG cross-linked membranes

    , Article Chemical Papers ; Volume 75, Issue 7 , 2021 , Pages 3131-3153 ; 03666352 (ISSN) Rizwan Dilshad, M ; Islam, A ; Haider, B ; Sajid, M ; Ijaz, A ; Khan, R. U ; Khan, W. G ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Novel PVA/PEG cross-linked membranes were prepared with (0–20 wt. %) of silica nanoparticles. The presence of both the polymers and additive was confirmed by FTIR analysis. The thermal properties of the membranes were analyzed by TGA and DSC analysis. The morphological and mechanical properties of the membranes were studied by SEM analysis and tensile testing, respectively. The gas permeation performances of the membranes were examined using state-of-the-art gas permeability cell. It was found that permeability of all the gases increased with the increase of silica loading, whereas ideal selectivity of carbon dioxide with respect to nitrogen and methane increased up to 10 wt. % loading and... 

    Poly (vinyl alcohol)/graphene oxide nanocomposite films and hydrogels prepared by gamma ray

    , Article Plastics, Rubber and Composites ; Volume 48, Issue 2 , 2019 , Pages 42-47 ; 14658011 (ISSN) Frounchi, M ; Dadbin, S ; Tabatabaei, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Poly (vinyl alcohol)/graphene oxide (PVA/GO) gamma irradiated nanocomposite films and hydrogels were prepared. In composite films, GO was initially irradiated by gamma ray in order to improve interactions between GO and PVA. The film containing 1 wt-% GO was very strong where tensile modulus and tensile yield strength were 45 and 115% higher than those of pure PVA. In the second set of experiments PVA/GO hydrogels were made by irradiating PVA/GO suspensions by gamma ray at various doses. It was an interesting finding that GO increased the gel portion of hydrogels through contribution of H-bonds between PVA and GO. The hydrogels prepared at 20 kGy had remarkable water swelling ratio that... 

    Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and PVA hydrogel

    , Article Advanced Materials Technologies ; 2021 ; 2365709X (ISSN) Abolpour Moshizi, S ; Moradi, H ; Wu, S ; Han, Z. J ; Razmjou, A ; Asadnia, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Flow sensors play a critical role in monitoring flow parameters, including rate, velocity, direction, and rotation frequency. In this paper, inspired by biological hair cells in the human vestibular system, an innovative flow sensor is developed based on polyvinyl alcohol (PVA) hydrogel nanocomposites with a maze-like network of vertically grown graphene nanosheets (VGNs). The VGNs/PVA hydrogel absorbs a copious amount of water when immersed in water, making the sensor highly sensitive to tiny stimuli underwater. The sensor demonstrates a high sensitivity (5.755 mV (mm s−1)−1) and extremely low velocity detection (0.022 mm s−1). It also reveals outstanding performance in detecting... 

    Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and PVA hydrogel

    , Article Advanced Materials Technologies ; 2021 ; 2365709X (ISSN) Abolpour Moshizi, S ; Moradi, H ; Wu, S ; Han, Z. J ; Razmjou, A ; Asadnia, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Flow sensors play a critical role in monitoring flow parameters, including rate, velocity, direction, and rotation frequency. In this paper, inspired by biological hair cells in the human vestibular system, an innovative flow sensor is developed based on polyvinyl alcohol (PVA) hydrogel nanocomposites with a maze-like network of vertically grown graphene nanosheets (VGNs). The VGNs/PVA hydrogel absorbs a copious amount of water when immersed in water, making the sensor highly sensitive to tiny stimuli underwater. The sensor demonstrates a high sensitivity (5.755 mV (mm s−1)−1) and extremely low velocity detection (0.022 mm s−1). It also reveals outstanding performance in detecting... 

    Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and pva hydrogel

    , Article Advanced Materials Technologies ; Volume 7, Issue 1 , 2022 ; 2365709X (ISSN) Abolpour Moshizi, S ; Moradi, H ; Wu, S ; Han, Z. J ; Razmjou, A ; Asadnia, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Flow sensors play a critical role in monitoring flow parameters, including rate, velocity, direction, and rotation frequency. In this paper, inspired by biological hair cells in the human vestibular system, an innovative flow sensor is developed based on polyvinyl alcohol (PVA) hydrogel nanocomposites with a maze-like network of vertically grown graphene nanosheets (VGNs). The VGNs/PVA hydrogel absorbs a copious amount of water when immersed in water, making the sensor highly sensitive to tiny stimuli underwater. The sensor demonstrates a high sensitivity (5.755 mV (mm s−1)−1) and extremely low velocity detection (0.022 mm s−1). It also reveals outstanding performance in detecting... 

    PLA microspheres-embedded pva hydrogels prepared by gamma-irradiation and freeze-thaw methods as drug release carriers

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 62, Issue 1 , 2013 , Pages 28-33 ; 00914037 (ISSN) Behnoodfar, D ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    2013
    Abstract
    A drug delivery system based on poly (vinyl alcohol) (PVA) hydrogels containing ibuprofen-loaded poly (lactic acid) (PLA) microspheres was developed to improve the release kinetics of this model drug. Gamma-irradiation and freeze-thawing were applied to prepare poly (vinyl alcohol) hydrogels. Properties and morphology of these composite hydrogels were investigated using FTIR, DSC, and SEM. In vitro release indicated that entrapment of the microspheres into the PVA hydrogels causes a reduction in both the release rate and the initial burst effect. PLA microspheres entrapped into the PVA hydrogels showed more suitable controlled release kinetics for drug delivery  

    Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration

    , Article Artificial Cells, Nanomedicine and Biotechnology ; 2016 , Pages 1-8 ; 21691401 (ISSN) Mahnama, H ; Dadbin, S ; Frounchi, M ; Rajabi, S ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Porous scaffolds composed of gelatin/poly (vinyl alcohol), (Gel/PVA), were prepared using combination of freeze gelation and freeze drying methods. The effect of polymer concentration, gelatin/PVA ratio, and glutaraldehyde/gelatin ratio (GA/Gel) was investigated on morphology of pores, swelling ratio, biodegradation, and skin cell culture. At optimum preparation conditions the scaffolds had uniform pore size distributions showing high swelling ratio of 23.6. The scaffolds were of biodegradable nature and almost degraded in 28 days. Human dermal fibroblast cells (HDF) were cultured on the scaffolds and MTS assay was conducted to evaluate the influence of PVA on growth and proliferation of the... 

    New efficient inorganic-organic nanofibers electrospun membrane for fluorescence detection and removal of mercury (II) ions

    , Article Journal of Molecular Structure ; Volume 1179 , 2019 , Pages 242-251 ; 00222860 (ISSN) Tahvili, A ; Poush, M. K ; Ahmed, M ; Parsaee, Z ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, a new inorganic-organic nano fibrous membrane (PTSNFM) has been fabricated via immobilization of carbazol-based Schiff base (S) into a polyvinyl alcohol (PVA) - tetraethyl orthosilicate (TEOS) polymeric support using the electrospinning method. PTSNFM has been used as an optode to detect and remove of mercury (II) ions. The characterization of PTSNFM has been fully carried out using different methods including FE-SEM, TEM, AFM, viscosity, surface tension and conductivity. FE-SEM and FT-IR analysis demonstrated the binding of Hg (II) to the PTSNFM via chelating of Hg (II) to the Schiff base ligand. PTSNFM can detect Hg (II) in the dynamic range of 0.020–0.50 ng/mL, with the LOD... 

    Effect of alumina on the performance and characterization of cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation

    , Article Separation and Purification Technology ; Volume 210 , 2019 , Pages 627-635 ; 13835866 (ISSN) Dilshad, M. R ; Islam, A ; Hamidullah, U ; Jamshaid, F ; Ahmad, A ; Zahid Butt, M. T ; Ijaz, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this work, poly(vinyl) alcohol (PVA)/poly(ethylene) glycol (PEG) 600 g/mol cross-linked membranes with different alumina (Al2O3) content were synthesized. The membranes were then characterized by FTIR, TGA, DSC, SEM, mechanical strength and permeation properties for carbon dioxide and nitrogen gases at different operating temperatures. The FTIR results confirmed the acetal linkages of cross-linking at 1083 cm−1 and the presence of stretching and bending peaks of Al-O bond at 598 and 444 cm−1, respectively. TGA results showed that the thermal stabilities of the membranes improved with the addition of alumina particles. DSC analysis proved that the glass transition temperature of the... 

    Antioxidant, antifungal, water binding, and mechanical properties of poly(vinyl alcohol) film incorporated with essential oil as a potential wound dressing material

    , Article Journal of Applied Polymer Science ; Vol. 131, issue. 20 , 2014 Kavoosi, G ; Nateghpoor, B ; Dadfar, S. M. M ; Dadfar, S. M. A ; Sharif University of Technology
    Abstract
    In this study, the properties of poly (vinyl alcohol)(PVA) films incorporated with Zataria multiflora essential oil (ZMO) as a potential antioxidant/antibacterial material was investigated. PVA films were prepared from PVA solutions (2% w/v) containing different concentrations of ZMO. Water solubility, moisture absorption, water swelling, and water vapor permeability for pure PVA films were 57 ± 1.1, 99 ± 3.2%, 337 ± 8%, and 0.453 ± 0.015 g mm/m2 h, respectively. Incorporation of ZMO into PVA films caused a significant decrease in water swelling and moisture absorption and increase in solubility and water vapor permeability. Tensile strength, elastic modulus, and elongation at break for pure... 

    Investigation of mechanical properties, antibacterial features, and water vapor permeability of polyvinyl alcohol thin films reinforced by glutaraldehyde and multiwalled carbon nanotube

    , Article Polymer Composites ; Vol. 35,Issue. 9 , 2014 , pp. 1736-1743 ; ISSN: 1548-0569 Mohammad Mahdi Dadfar, S ; Kavoosi, G ; Mohammad Ali Dadfar, S ; Sharif University of Technology
    Abstract
    Polyvinyl alcohol (PVA) thin films were reinforced by glutaraldehyde and multiwalled carbon nanotubes (MWCNTs) and then mechanical, water solubility, water swelling, water uptake, water vapor permeability, and antibacterial properties of the films were examined. Cross-linking by glutaraldehyde or incorporation of MWCNT caused a significant increase in tensile strength, decrease in elongation at break, and increase in Young's modulus of the PVA films, while MWCNTs were more effective rather than that of glutaraldehyde. Cross-linking by glutaraldehyde or incorporation of MWCNT caused a significant decrease in water solubility, water swelling and water uptake, with a similar manner.... 

    Preparation of PVA nanocomposites using salep-reduced graphene oxide with enhanced mechanical and biological properties

    , Article RSC Advances ; Volume 5, Issue 112 , 2015 , Pages 92428-92437 ; 20462069 (ISSN) Pourjavadi, A ; Pourbadiei, B ; Doroudian, M ; Azari, S ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Salep, known as a biodegradable polysaccharide, is hydrolyzed and used as both a reducing agent and stabilizer for graphene oxide (GO). The functionalized reduced graphene oxide (f-rGO) is homogenously dispersed in an aqueous solution of poly(vinyl alcohol) (PVA). PVA based hydrogel and film nanocomposites are prepared and proposed as new biomaterials for tissue engineering applications. The mechanical properties of the film nanocomposites are investigated with varying content of f-rGO, glycerol and citric acid as a reinforcing agent, a plasticizer agent and a cross linking agent respectively. For the first time, chemically cross linked PVA hydrogels are synthesized using... 

    A flow injection μ-solid phase extraction system based on electrospun polyaniline nanocomposite

    , Article Journal of Chromatography A ; Volume 1433 , February , 2016 , Pages 34–40 ; 00219673 (ISSN) Bagheri, H ; Khanipour, P ; Roostaie, A ; Sharif University of Technology
    Abstract
    In this study, a fast and sensitive flow injection μ-solid phase extraction (FI-μ-SPE) technique based on an electrospun polyaniline (PANI) nanocomposite in conjunction with gas chromatography-mass spectrometry (GC-MS) was developed. The PANI-based nanocomposite was synthesized by electrospinning of a solution containing polyvinyl alcohol (PVA)/PANI. The majority of PVA template was subsequently removed from the whole PVA/PANI nanofibers blend by exposing the electrospun nanocomposite to hot water. The homogeneity, porosity and characterization of the electrospun nanofibers were investigated by the scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Due to... 

    Effect of gamma ray on magnetic bio-nanocomposite

    , Article Materials Chemistry and Physics ; Volume 170 , 2016 , Pages 71-76 ; 02540584 (ISSN) Asadi, S ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Magnetic polyvinyl alcohol (M-PVA) films were prepared via solution casting filled with surface modified superparamagnetic nanoparticles (M-NPs). The M-NPs were coated with citric acid during synthesis. The chemical interaction between the citric acid and M-NPs was confirmed by Fourier transform infrared spectroscopy (FTIR). The average hydrodynamic diameter of M-NPs was 19.7 nm measured by dynamic light scattering DLS and appeared almost spherical in scanning electron microscopy (SEM). The M-NPs were uniformly dispersed in polyvinyl alcohol (PVA) matrix and showed high optical transparency with good mechanical properties. M-PVA hydrogels were synthesized using gamma irradiation. The... 

    Preparation of electrospun affinity membrane and cross flow system for dynamic removal of anionic dye from colored wastewater

    , Article Fibers and Polymers ; Volume 18, Issue 12 , 2017 , Pages 2387-2399 ; 12299197 (ISSN) Hosseini, S. A ; Vossoughi, M ; Mahmoodi, N. M ; Sharif University of Technology
    Abstract
    In this research, poly(vinyl alcohol) (PVA)/chitosan electrospun nanofibrous membrane (ENM) was prepared by electrospinning method in order to investigate its dye removal ability from colored wastewater. The morphology and average fiber diameter of the membranes were investigated by scanning electron microscopy (SEM), image analysis and atomic force microscopy (AFM). The chemical characterization was studied by Fourier transform infrared spectroscopy (FTIR). The permeability of the membranes was evaluated by measuring pure water flux (PWF). In order to investigate the performance of the prepared membranes they were used in the batch adsorption and membrane separation for dye removal from... 

    Curcumin incorporated PVA-borax dual delivery hydrogels as potential wound dressing materials—Correlation between viscoelastic properties and curcumin release rate

    , Article Journal of Applied Polymer Science ; Volume 135, Issue 45 , 2018 ; 00218995 (ISSN) Rezvan, G ; Pircheraghi, G ; Bagheri, R ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Poly(vinyl alcohol) (PVA) is a biocompatible polymer which can be physically crosslinked by Borax to form hydrogel. PVA-Borax (PB) hydrogel is a promising candidate for drug delivery system. Therefore, it is necessary to find the quantitative relationship between drug release rate and network structure of PB hydrogels to predict and control drug release rate. In this work, at first step the optimum ratio of Borax: PVA was determined by studying the interactions between PVA chains and Borax molecules by means of Fourier transform infrared spectroscopy, while viscoelastic properties of prepared PB hydrogels were measured in the oscillatory shear flow field. In the following, curcumin as a... 

    Ultrasound-electrospinning-assisted fabrication and sensing evaluation of a novel membrane as ultrasensitive sensor for copper (II) ions detection in aqueous environment

    , Article Ultrasonics Sonochemistry ; Volume 44 , June , 2018 , Pages 152-161 ; 13504177 (ISSN) Gao, W ; Haratipour, P ; Rezaie Kahkha, M. R ; Tahvili, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The present study has reported an optimized fabrication and application of a novel PVA/TEOS/Schiff base nanofibers membrane as a highly sensitive copper (II) ions in aqueous environment. Here in, for first time, an ultrasound-assisted synthesized symmetric Schiff base has been immobilized on a hybrid polyvinyl alcohol (PVA) and TEOS using electrospinning technique for detection and filtration of copper ions. For this purpose, various working parameters were evaluated and finally the optimized nano fibers membrane was synthesized with 72 nm thickness and PVA/TEOS/Schiff base ratio of (wt%) 8:6:1. The optimized sample named PTLNFM has been employed successfully as an ultra sensitive... 

    Facile synthesis of extremely biocompatible double-network hydrogels based on chitosan and poly(vinyl alcohol) with enhanced mechanical properties

    , Article Journal of Applied Polymer Science ; Volume 135, Issue 7 , 2018 ; 00218995 (ISSN) Pourjavadi, A ; Tavakoli, E ; Motamedi, A ; Salimi, H ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    An easy and ecofriendly method for designing double-network (DN) hydrogels based on chitosan and poly(vinyl alcohol) (PVA) with high mechanical performance is described. When covalent bonds in the networks are used as crosslinking agents in the achievement of a higher mechanical strength, the irreversible deformation of these hydrogels after a large force is applied is still one of the most important obstacles. To overcome this problem, we used physical crosslinking for both networks. The mechanical strength, surface morphology, and cytotoxicity of the films were studied by tensile testing, scanning electron microscopy analysis, and an MTT assay. The synthesized chitosan–PVA DN hydrogels... 

    Carbon-based nanocomposites: Distinguishing between deep-bed filtration and external filter cake by coupling core-scale mud-flow tests with computed tomography imaging

    , Article Journal of Natural Gas Science and Engineering ; Volume 105 , 2022 ; 18755100 (ISSN) Heydarzadeh Darzi, H ; Fouji, M ; Ghorbani Heidarabad, R ; Aghaei, H ; Hajiabadi, S. H ; Bedrikovetsky, P ; Mahani, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Although Multi-Walled Carbon NanoTubes (MWCNTs) are found to influence the rheological behavior of drilling fluids, there are yet some controversies regarding their performance towards reducing formation damage induced by the invasion of water-based drilling fluids (WBFs). To address this important question, we synthesized novel nanocomposite materials via modifying the MWCNT via varying the proportion of carboxylated MWCNTs to PolyVinyl Alcohol (PVA). These nanocomposites were then used to make nano-based drilling-fluids (NDFs). The performance of the NDFs was evaluated by a set of rheological behavior tests, filtration experiments, and core-scale mud flow tests. To distinguish between the... 

    A flow injection μ-solid phase extraction system based on electrospun polyaniline nanocomposite

    , Article Journal of Chromatography A ; Volume 1433 , 2016 , Pages 34-40 ; 00219673 (ISSN) Bagheri, H ; Khanipour, P ; Roostaie, A ; Sharif University of Technology
    Elsevier 
    Abstract
    In this study, a fast and sensitive flow injection μ-solid phase extraction (FI-μ-SPE) technique based on an electrospun polyaniline (PANI) nanocomposite in conjunction with gas chromatography-mass spectrometry (GC-MS) was developed. The PANI-based nanocomposite was synthesized by electrospinning of a solution containing polyvinyl alcohol (PVA)/PANI. The majority of PVA template was subsequently removed from the whole PVA/PANI nanofibers blend by exposing the electrospun nanocomposite to hot water. The homogeneity, porosity and characterization of the electrospun nanofibers were investigated by the scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Due to...