Loading...
Search for: quantum-capacitance
0.005 seconds

    Compact closed form model for skin and proximity effect in multiwall carbon nanotube bundles as GSI interconnects

    , Article IEEE Transactions on Electron Devices ; Vol. 61, issue. 8 , July , 2014 , p. 2899-2904 Farahani, E. K ; Sarvari, R ; Sharif University of Technology
    Abstract
    Closed form model for skin and proximity effect is necessary for GSI interconnects. In this paper, exact formulation for current distribution inside multiwall carbon nanotube (MWCNT) bundles is derived using multiconductor transmission line model. The current distribution is different from copper wires and it is geometry dependent because of kinetic inductance and quantum capacitance. This current distribution is used to compute and formulate high frequency resistance of MWCNT bundles  

    Simulation of a carbon nanotube field effect transistor with two different gate insulators

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 2332-2340 ; 10263098 (ISSN) Fallah, M ; Faez, R ; Jafari, A. H ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    In this paper, a novel structure for MOSFET like CNTFETs (MOSCNTs) is proposed, combining the advantages of both high and low dielectrics to improve output characteristics. In this structure, the gate dielectric at the drain side is selected from a material with low dielectric constant to form smaller capacitances, while a material with high dielectric constant is selected at the source side to improve on current and reduce leakage current. The new structure is simulated based on the Schrödinger-Poisson formulation. Obtained results show that the proposed configuration has lower off and higher on current in comparison with low-k MOSCNTs. Also, using a two-dimensional model, a wide range of... 

    Shedding light on pseudocapacitive active edges of single-layer graphene nanoribbons as high-capacitance supercapacitors

    , Article ACS Applied Energy Materials ; Volume 2, Issue 5 , 2019 , Pages 3665-3675 ; 25740962 (ISSN) Qorbani, M ; Esfandiar, A ; Mehdipour, H ; Chaigneau, M ; Irajizad, A ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    In the field of energy storage by high-rate supercapacitors, there has been an upper limit for the total interfacial capacitance of carbon-based materials. This upper limit originates from both quantum and electric double-layer capacitances. Surpassing this limit has been the focus of intense research in this field. Here, we precisely investigate the effect of chemical functional groups and physical confinement on the electrochemical performance of graphene nanoribbons. We present the results of a quasi-one-dimensional single-layer graphene nanoribbon (120 nm in width and -100 μm in length) microelectrode fabricated by mechanical exfoliation of graphite, followed by electron beam lithography...