Loading...
Search for: quantum-dot-cellular-automata
0.005 seconds

    Quantum-Dot Cellular Automata (QCA): Theory and Application

    , M.Sc. Thesis Sharif University of Technology Sadat Bashiri, Fereshteh (Author) ; Faez, Rahim (Supervisor) ; Bagheri Shouraki, Saeed (Supervisor)
    Abstract
    Quantum-Dot Cellular Automata (QCA) is a novel field of nanotechnology which is being designed and implemented in molecular scales. It has major advantageous over transistor based technology such as: low power consumption, high information transition speed, small size and high density. It has been shown that conventional transistor based circuits can be implemented in this nanotechnology with less complexity. Furthermore, binary circuits can be implemented in QCA technology since QCA cells have only two independent and equivalent states. So, QCA provides appropriate space for computational circuits. The aim of computational circuits design is to achieve small size and high speed processors.... 

    Efficient design of a coplanar adder/subtractor in quantum-dot cellular automata

    , Article 9th UKSim-AMSS IEEE European Modelling Symposium on Computer Modelling and Simulation, EMS 2015, 6 October 2015 through 8 October 2016 ; 2015 , Pages 456-461 ; 9781509002061 (ISBN) Sangsefidi, M ; Karimpour, M ; Sarayloo, M ; Romero G ; Orsoni A ; Al-Dabass D ; Pantelous A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Scaling of CMOS devices being aggressively decreasing by reduce of transistor dimensions. However, such level of integration leads to many physical limit and transistors cannot get much smaller than their current size. Quantum-dot Cellular Automate is a novel technology which significantly reduces physical limit of CMOS devices implementation, thus, it can be an appropriate candidate to be substituted for CMOS technology. In addition to high integration density of QCA circuits, other unique specifications such as high speed and low power consumption encourage researchers to utilize this technology instead of CMOS technology. In this paper, a new layout of XOR gate is presented in QCA... 

    High speed and low cost synchronous counter design in quantum-dot cellular automata

    , Article Microelectronics Journal ; Volume 73 , March , 2018 , Pages 1-11 ; 00262692 (ISSN) Sangsefidi, M ; Abedi, D ; Yoosefi, E ; Karimpour, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Quantum-dot Cellular Automata (QCA) is a very interesting nano-scale technology. Extremely small feature size and ultra-low power consumption are the most important features of QCA compared to CMOS. Counters are considered as one of the most fundamental components in sequential circuits. Previous QCA synchronous counters (QSCs) have been designed and simulated using two methods. In the first method, QSCs utilize direct mapping flip-flop designs in CMOS technology to QCA. In the second method, QSCs are designed with the inherent capability of QCA technology. Despite being attractive, mentioned approaches have constraints (i.e. long wire length and area issues). In this brief, design and...