Loading...
Search for: quantum-well-lasers
0.006 seconds

    Analysis of lattice temperature effects on a GaInP/6H-SiC strained quantum-well lasers

    , Article Asian Journal of Chemistry ; Volume 25, Issue 9 , Oct , 2013 , Pages 4715-4717 ; 09707077 (ISSN) Marjani, S ; Faez, R ; Hosseini, S. E ; Sharif University of Technology
    2013
    Abstract
    In this paper, simulative study on the effects of lattice temperature on a GaInP/6H-SiC strained quantum-well (QW) laser's device is presented. Loss mechanisms are severe in the edge-emitting lasers. As a consequence, the wall-plug efficiency is sensitive to changes in temperature. The lasers used in this work were separate-confinement quantum-well lasers with a single strained GaInP, located in a latticematched waveguide core and cladding region of 6H-SiC. This paper provides the key results of the wall-plug efficiency upon the lattice temperature  

    Analysis of carrier dynamic effects in transistor lasers

    , Article Optical Engineering ; Volume 51, Issue 2 , December , 2012 ; 00913286 (ISSN) Horri, A ; Mirmoeini, S. Z ; Faez, R ; Sharif University of Technology
    2012
    Abstract
    We present an analytical model to analyze the influence of carrier dynamics on the static and dynamic responses of transistor laser (TL). Our analysis is based on solving the continuity equation and the rate equations which incorporate the virtual states as a conversion mechanism. We show that the details of the dc and small signal behavior of transistor lasers are strongly affected by the escape and capture times of carriers in quantum well (QW). Also, the effects of carrier recombination lifetime in the quantum well and base regions on the TL static and dynamic performances are investigated  

    Simulation of deep level traps effects in quantum well transistor laser

    , Article Journal of Computational Electronics ; Volume 12, Issue 4 , August , 2013 , Pages 812-815 ; 15698025 (ISSN) Horri, A ; Faez, R ; Sharif University of Technology
    2013
    Abstract
    In this paper, we present an analytical model to analyze the influence of deep level traps on the static and dynamic responses of transistor laser (TL). Our analyze is based on analytically solving the continuity equation and rate equations including the effect of the deep level trap (DLT), which incorporate the virtual states as a conversion mechanism. The results of simulation show that the main characteristics of laser such as threshold current, quantum efficiency, output power, and modulation bandwidth are affected by total density of traps in the active region