Loading...
Search for: radiative-parameters
0.005 seconds

    On-Line orbit and albedo estimation using a strong tracking algorithm via satellite surface temperature data

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 57, Issue 3 , June , 2021 , Pages 1443-1454 ; 00189251 (ISSN) Nasihati Gourabi, F ; Kiani, M ; Pourtakdoust, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    The Earth albedo factor (EAF) is a major required parameter for the thermal analysis of low Earth orbit satellites. Satellites receive variable albedo radiation as they orbit around the Earth that is heavily dependent on the Earth's local terrain as well as the instantaneous cloud coverage. However, for satellite thermal balancing and control analysis, a constant mean EAF is usually taken based on the orbital parameters that could potentially introduce erroneous results. Recent advances in temperature-based orbit estimation (TBOE) algorithms have revealed a significant sensitivity concerning EAF giving rise to the idea of its on-line estimation for added accuracy. In this sense, a novel... 

    MHD boundary layer of GO–H2O nanoliquid flow upon stretching plate with considering nonlinear thermal ray and Joule heating effect

    , Article Heat Transfer - Asian Research ; Volume 48, Issue 8 , 2019 , Pages 4152-4173 ; 10992871 (ISSN) Shahlaei, S ; Hassankolaei, M. G ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    This essay investigates a steady three-dimensional laminar boundary layer flow of magnetohydromagnetic radiative of graphene oxide-water nanofluid over an extensible surface in the attendance of couple stress, thermal ray, and Joule heating impact. Governing equations are solved numerically using the Runge-Kutta-Fehlberg 4.5 approach after the transformation of partial differential equations into ordinary differential equations. The main goal of this essay is to check the impacts of variations in the value of numerous parameters on the velocity along x and y-axis directions ((Formula presented.)) and temperature ((Formula presented.)) profiles, and also on the local skin friction coefficient... 

    On-line orbit and albedo estimation using a strong tracking algorithm via satellite surface temperature data

    , Article IEEE Transactions on Aerospace and Electronic Systems ; 9 December , 2020 Nasihati Gourabi, F ; Kiani, M ; Pourtakdoust, S. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    The Earth albedo factor (EAF) is a major required parameter for the thermal analysis of low Earth orbit (LEO) satellites. Satellites receive variable albedo radiation as they orbit around the Earth that is heavily dependent on the Earth's local terrain as well as the instantaneous cloud coverage. However, for satellite thermal balancing and control analysis, a constant mean EAF is usually taken based on the orbital parameters that could potentially introduce erroneous results. Recent advances in temperature-based orbit estimation (TBOE) algorithms have revealed a significant sensitivity concerning EAF giving rise to the idea of its on-line estimation for added accuracy. In this sense, a... 

    Surveying the hybrid of radiation and magnetic parameters on Maxwell liquid with TiO2 nanotube influence of different blades

    , Article Heat Transfer ; Volume 51, Issue 6 , 2022 , Pages 4858-4881 ; 26884534 (ISSN) Abdollahzadeh, M. J ; Fathollahi, R ; Pasha, P ; Mahmoudi, M ; Samimi Behbahan, A ; Domiri Ganji, D ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    In this paper, the impacts of Maxwell nanoliquid transmission, rectangular with titanium oxide nanoparticles are explored over the triangular, chamfer blades. The innovation of this paper is the use of the number of chamfers, rectangular, and triangular blades at the top and bottom of a stretched plate to study physical nanofluid parameters such as temperature and the effects of magnetism. Also, by determining the appropriate height and length for the blades, we achieve the best optimization of temperature and velocity of nanofluid between the plate and the blades, which improves heat transfer and with a more and better effect of magnetic effects. The finite element method is utilized for...