Loading...
Search for: radio-frequency--rf
0.004 seconds

    A system-level design method for RF receiver front-end with low power consumption

    , Article Analog Integrated Circuits and Signal Processing ; 2021 ; 09251030 (ISSN) Fazel, Z ; Atarodi, M ; Sadughi, S ; Sharif University of Technology
    Springer  2021
    Abstract
    Due to wireless communication’s rapid growth, the need for low power integrated transceivers is increasing. The receiver power is a major limiting factor, and the radio frequency (RF) front-end is often its significant power consuming part. Therefore, system-level design in which the overall specifications are distributed among RF front-end building blocks such that the minimum total power is consumed is crucial. A complete system-level design method for a low power RF front-end is presented in this paper. For this purpose, the performance of each block is modeled by its current and overdrive voltage. An analytical associated with a search-based optimization technique is employed to derive... 

    Optimal control of gains in a linear accelerator: a supervisory method for vector-sum control

    , Article IEEE Transactions on Control Systems Technology ; Volume 25, Issue 5 , 2017 , Pages 1800-1806 ; 10636536 (ISSN) Rezaeizadeh, A ; Smith, R. S ; Sharif University of Technology
    Abstract
    In a linear accelerator, driven by radio frequency (RF) amplifier stations, one must precisely control the energy gain of the accelerating beam. The RF stations can be viewed as amplifiers placed sequentially to accelerate the beam. This brief presents two control schemes within which the RF stations act as actuators, and a centralized control unit controls the beam energy by acting either on the RF amplitudes or on the RF phases. The control algorithms are based on convex optimization problems with different objectives. The two approaches are successfully tested at the SwissFEL injector test facility using three full-scale RF stations. The two methods are compared from both performance and... 

    A 2-GHz CMOS image-reject receiver with LMS calibration

    , Article IEEE Journal of Solid-State Circuits ; Volume 38, Issue 2 , 2003 , Pages 167-175 ; 00189200 (ISSN) Der, L ; Razavi, B ; Sharif University of Technology
    2003
    Abstract
    This paper describes a sign-sign least-mean squares (LMS) technique to calibrate gain and phase errors in the signal path of a Weaver image-reject receiver. The calibration occurs at startup and the results are stored digitally, allowing continuous signal reception thereafter. Fabricated in a standard digital 0.25-μm CMOS technology, the receiver achieves an image-rejection ratio of 57 dB after calibration, a noise figure of 5.2 dB, and a third-order input intercept point of -17 dBm. The circuit consumes 55 mW in calibration mode and 50 mW in normal receiver mode from a 2.5-V power supply. The prototype occupies an area of 1.23 × 1.84 mm2  

    Iterative learning control for the radio frequency subsystems of a free-electron laser

    , Article IEEE Transactions on Control Systems Technology ; 2017 ; 10636536 (ISSN) Rezaeizadeh, A ; Smith, R. S ; Sharif University of Technology
    Abstract
    In linear particle accelerators used for free-electron lasers, it is often required that the electron bunches experience the same electric field as they pass through the accelerating structures. For radio frequency (RF) pulsed mode machines, like the SwissFEL, this means that the amplitude and phase of the RF pulses feeding the structures through the waveguides should be kept constant over the pulselength. This raises an interesting problem that can be addressed by an iterative learning control (ILC) technique. This method manipulates the input waveforms iteratively, in order to generate flat amplitude and phase pulses at the output of the system. In this paper, we introduce two ILC... 

    Theory of RF pulse generation through nonlinear transmission lines

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 66, Issue 7 , 2018 , Pages 3234-3244 ; 00189480 (ISSN) Samizadeh Nikoo, M ; Hashemi, S. M. A ; Farzaneh, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Nonlinear transmission lines (NLTLs) are one of the most prominent solid-state sources of high-power RF pulses. However, there is no integrated mathematical basis, which predicts adequately the generated waveforms on an NLTL and those delivered to the load. This analysis is required for designing and optimizing these transmission lines. Most works in this area are related to experimental studies and results. In this paper, we have developed a theoretical basis, which predicts all the required characteristics of the generated RF pulses on a lossy NLTL. The RF amplitude, the maximum voltage, and the central frequency of the generated pulses at each node of an NLTL are formulated. All the... 

    Self-biased low loss conductor featured with skin effect suppression for high quality RF passives

    , Article IEEE Transactions on Magnetics ; Volume 48, Issue 11 , 2012 , Pages 4139-4142 ; 00189464 (ISSN) Iramnaaz, I ; Schellevis, H ; Rejaei, B ; Fitch, R ; Zhuang, Y ; Sharif University of Technology
    IEEE  2012
    Abstract
    We present experimental data for artificial metaconductors exhibiting skin effect suppression at microwave frequencies. The metaconductor consists of a stack comprising twelve periods of alternating ferromagnetic (Permalloy) and normal metal (Cu) layers. Near the effective antiferromagnetic resonant frequency the average in-plane magnetic permeability of the stack approaches zero, leading to an increase in the skin depth. Compared to a Cu-based device, up to 70% loss reduction has been achieved by a metaconductor based coplanar wave guide at ∼ 10 GHz without changing the propagation wavelength. Moreover, unlike conventional magnetic devices, no external magnetic bias is required due to the... 

    High-quality integrated inductors based on multilayered meta-conductors

    , Article IEEE Microwave and Wireless Components Letters ; Volume 22, Issue 7 , 2012 , Pages 345-347 ; 15311309 (ISSN) Iramnaaz, I ; Schellevis, H ; Rejaei, B ; Fitch, R ; Zhuang, Y ; Sharif University of Technology
    2012
    Abstract
    We demonstrate high-quality integrated inductors built from a multilayer of alternating copper and ferromagnetic films. The multilayer acts as a meta-conductor whose effective permeability becomes nearly zero at its ferromagnetic anti-resonance frequency. This leads to a suppression of the skin effect and a significant increase in the quality factor of the device. Experiments show an up to 86% increase in quality factor compared to conventional copper-based spiral inductors at high frequencies  

    An optimized phased-array antenna for intra-chip communications

    , Article LAPC 2011 - 2011 Loughborough Antennas and Propagation Conference, 14 November 2011 through 15 November 2011 ; November , 2011 , Page(s): 1 - 4 ; 9781457710155 (ISBN) Tavakoli, E ; Tabandeh, M ; Kaffash, S ; Sharif University of Technology
    2011
    Abstract
    The continued migration to smaller nanometer geometries brought fundamental limits to traditional on-chip hard wires performance. According to the International Technology Roadmap for Semiconductor (ITRS), feature size shrinking leads an increase in the operating frequency of RFCMOS devices. Thus, new interconnect methodologies such as radio frequency (RF) wireless can be employed on future chips projected for intra-chip wireless data communications. The size of Si integrated antenna in these frequencies will be several millimetres and the antenna length will be decrease by frequency increasing. In this paper, we have proposed an optimum radiation pattern achieved by a phased array (PA)... 

    A compact all-solid-state self-compressing low-to-high power converting rF pulse generator

    , Article IEEE Transactions on Plasma Science ; Volume PP, Issue 99 , 2016 ; 00933813 (ISSN) Samizadeh Nikoo, M ; Hashemi, S. M. A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this paper, a novel method for high-repetition-rate high-power radio frequency (RF) pulse generation, which involves only passive solid-state devices and is capable of being used for generating high power microwaves using a low-to-high power converting scheme based on nonlinear self-compression is proposed. The method is also expected to be of low jitter. In the proposed circuit, two high voltage diodes with proper reverse recovery characteristics are used. The simulation results show that the proposed circuit generates RF pulses, with central frequencies up to gigahertz range. By applying a sub-kilowatt power supply, the maximum output power was well over 10 kW. This power can be... 

    Adaptive control of low-level radio frequency signals based on in-phase and quadrature components

    , Article IEEE Transactions on Nuclear Science ; Volume 64, Issue 4 , 2017 , Pages 1023-1028 ; 00189499 (ISSN) Rezaeizadeh, A ; Smith, R. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This research work presents a low-level radio frequency (RF) control method based on the in-phase, I , and quadrature, Q , components of the RF signal. The proposed method uses only the main four arithmetic operations, i.e., addition, subtraction, multiplication, and division, which makes this control method suitable for implementation on the field-programmable gate array. The control scheme is adaptive in the sense that it estimates the system response on-the-fly, and therefore, it is robust against changes in the loop phase and/or gain during the operation. © 2017 IEEE  

    Theoretical analysis of RF pulse termination in nonlinear transmission lines

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 66, Issue 11 , 2018 , Pages 4757-4764 ; 00189480 (ISSN) Samizadeh Nikoo, M ; Hashemi, S. M. A ; Farzaneh, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Nonlinear transmission lines (NLTLs) are passive networks with the capability of modulating baseband pulses. These networks are used for generating RF pulses at high-power levels. NLTLs have a unique performance in high-power RF pulse generation among all the generators based on the solid-state technology. A high-power rectangular pulse is injected to the line, gradually evolved into an oscillatory pulse while propagating through the network, and finally, in the form of a high-power RF pulse, is delivered to the load. Properly terminating an NLTL, in order to transfer the maximum available RF power to the load, is an important problem. In this paper, an accurate analysis is presented, which... 

    Iterative learning control for the radio frequency subsystems of a Free-Electron laser

    , Article IEEE Transactions on Control Systems Technology ; Volume 26, Issue 5 , 2018 , Pages 1567-1577 ; 10636536 (ISSN) Rezaeizadeh, A ; Smith, R. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In linear particle accelerators used for free-electron lasers, it is often required that the electron bunches experience the same electric field as they pass through the accelerating structures. For radio frequency (RF) pulsed mode machines, like the SwissFEL, this means that the amplitude and phase of the RF pulses feeding the structures through the waveguides should be kept constant over the pulselength. This raises an interesting problem that can be addressed by an iterative learning control (ILC) technique. This method manipulates the input waveforms iteratively, in order to generate flat amplitude and phase pulses at the output of the system. In this paper, we introduce two ILC... 

    Nonuniform line generator for high-power RF applications

    , Article IEEE Transactions on Plasma Science ; Volume 46, Issue 1 , 2018 , Pages 64-71 ; 00933813 (ISSN) Samizadeh Nikoo, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Line generators were attractive structures for high-power radio frequency (RF) pulse generation for two decades. Due to some disadvantages, there has been little attention to this type of generator for a relatively long time. In this paper, a nonuniform line generator is used which resolves some of the main shortcomings of conventional line generators. The considered generator can generate RF pulses at higher frequencies with considerably higher repetition rates. Furthermore, the implementation of nonuniform line generators is significantly easier than that of their conventional counterparts. Measurement results for three nonuniform line generators are presented. The possibility of... 

    5-6 GHz dual-vector phase shifter in 0.18 μm LID CMOS

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 82-86 ; 9781728115085 (ISBN) Choopani, A ; Fakharzadeh, M ; Safarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, a low power active phase shifter in 0.18 μm CMOS technology, operating from 5 to 6 GHz, for WLAN applications is presented. Design equations for this novel structure, which consists of two current steering stages, transconductance stage and DACs, are derived, thoroughly. This phase shifter has a range of 360° with 5.625° phase resolution. The power consumption is 35 mW. The RMS phase error is only 0.3°. The simulated power gain, input P1dB, and NF are 4 dB, -0.8 dBm and 6 dB, respectively