Loading...
Search for: radius-of-gyration
0.006 seconds

    Effects of topological constraints on linked ring polymers in solvents of varying quality

    , Article Soft Matter ; Volume 16, Issue 12 , 2020 , Pages 3029-3038 Ahmadian Dehaghani, Z ; Chubak, I ; Likos, C. N ; Ejtehadi, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    We investigate the effects of topological constraints in catenanes composed of interlinked ring polymers on their size in a good solvent as well as on the location of their θ-point when the solvent quality is worsened. We mainly focus on poly[n]catenanes consisting of n ring polymers each of length m interlocked in a linear fashion. Using molecular dynamics simulations, we study the scaling of the poly[n]catenane's radius of gyration in a good solvent, assuming in general that Rg ∼ mμnν and we find that μ = 0.65 ± 0.02 and ν = 0.60 ± 0.01 for the range of n and m considered. These findings are further rationalized with the help of a mean-field Flory-like theory yielding the values of μ =... 

    Manipulation of biomolecules: A molecular dynamics study

    , Article Current Applied Physics ; Volume 14, Issue 9 , September , 2014 , Pages 1216-1227 ; ISSN: 15671739 Mahdjour Firouzi, M. A ; Nejat Pishkenari, H ; Mahboobi, S. H ; Meghdari, A ; Sharif University of Technology
    Abstract
    With the rapid progression of bionanorobotics, manipulation of nano-scale biosamples is becoming increasingly attractive for different biological purposes. Nevertheless, the interaction between a robotic probe and a biological sample is poorly understood and the conditions for appropriate handling is not well-known. Here, we use the molecular dynamics (MD) simulation method to investigate the manipulation process when a nanoprobe tries to move a biosample on a substrate. For this purpose, we have used Ubiquitin (UBQ) as the biomolecule, a single-walled carbon nanotube (SWCNT) as the manipulation probe, and a double-layered graphene sheets as the substrate. A series of simulations were... 

    Dissolution and conformational behavior of functionalized cellulose chains in the bulk, aqueous and non-aqueous media: A simulation study

    , Article Carbohydrate Research ; Volume 496 , October , 2020 Koochaki, A ; Moghbeli, M. R ; Rasouli, S ; Gharib Zahedi, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present study, we employ all-atom molecular dynamics simulations to investigate the dynamic behaviors and structural properties of the native and modified cellulose chains in the bulk, aqueous, and organic media. Particular attention has been directed to the role of different hydrophobic and hydrophilic functional groups as linear and branched aliphatic and also cyclic pendent groups on the solubility and packing of the cellulose chain. The various properties related to density profile, mean squared displacement, intramolecular entropy, radius of gyration, and radial distribution function were calculated. The results showed that the chain tendency toward crystallinity decreased when...