Loading...
Search for: raman-spectrometry
0.011 seconds
Total 27 records

    Raman active jagged-shaped gold-coated magnetic particles as a novel multimodal nanoprobe

    , Article Chemical Communications ; Volume 47, Issue 37 , Aug , 2011 , Pages 10404-10406 ; 13597345 (ISSN) Mahmoudi, M ; Amiri, H ; Shokrgozar, M. A ; Sasanpour, P ; Rashidian, B ; Laurent, S ; Casula, M. F ; Lascialfari, A ; Sharif University of Technology
    2011
    Abstract
    The creation of novel engineered multimodal nanoparticles (NPs) is a key focus in bionanotechnology and can lead to deep understanding of biological processes at the molecular level. Here, we present a multi-component system made of gold-coupled core-shell SPIONs, as a new nanoprobe with signal enhancement in surface Raman spectroscopy, due to its jagged-shaped gold shell coating  

    Metabolomics fingerprinting of the human seminal plasma of asthenozoospermic patients

    , Article Molecular Reproduction and Development ; Vol. 81, Issue. 1 , 2014 , pp. 84-86 ; ISSN: 1098-2795 Gilany, K ; Moazeni-Pourasil, R. S ; Jafarzadeh, N ; Savadi-Shiraz, E ; Sharif University of Technology
    Abstract
    It is estimated that 20% of couples are infertile, and half of these infertility cases are linked to men. One of conditions that can affect male fertility is asthenozoospermia. We applied Raman spectroscopy to the analysis of the metabolome of the human seminal plasma, and used chemometrics on the patterns of Raman spectra obtained. Significant changes were observed in the metabolome of the human seminal plasma of asthenozoospermic patients  

    Improvement of the electrochemical performance of a nickel rich LiNi0.5Co0.2Mn0.3O2 cathode material by reduced graphene oxide/SiO2 nanoparticle double-layer coating

    , Article New Journal of Chemistry ; Volume 43, Issue 6 , 2019 , Pages 2766-2775 ; 11440546 (ISSN) Razmjoo Khollari, M. A ; Paknahad, P ; Ghorbanzadeh, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Due to its high discharge capacity, low cost, and good safety, LiNi0.5Co0.2Mn0.3O2 (NCM 523) is regarded as a promising cathode material for the next-generation of lithium-ion batteries. However, poor cycling stability and rate capability are the main disadvantages of the NCM 523 cathode material. In this work, SiO2 single layer-coated and reduced graphene oxide (outer)/SiO2 (inner) double layer-coated NCM 523 have been prepared by a facile wet chemical method. Field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy results confirm that NCM 523... 

    Effect of Fe3 concentration on MWCNTs formation in liquid arcing method

    , Article Physica B: Condensed Matter ; Volume 405, Issue 20 , October , 2010 , Pages 4344-4349 ; 09214526 (ISSN) Shervin, S ; Gheytani, S ; Simchi, A ; Sharif University of Technology
    2010
    Abstract
    The formation of multi-walled carbon nanotubes (MWCNTs) during arc discharge in aqueous solutions of Fe2(SO4)3 and FeCl3 was studied. The concentration of iron ions changed from zero (deionized water) to 0.25 M and the cathodic products were examined by transmission electron microscopy, Raman spectrometry, and thermal gravimetric analysis. The experimental results showed that the crystallinity of MWCNTs is improved by increasing the concentration of iron ions. Nevertheless, the process yield and overall quality of the produced CNTs were significantly affected by iron concentration in the aqueous solution. This observation suggested that there should be an optimum iron concentration at which... 

    Visible-enhanced photocatalytic performance of CuWO4/WO3 hetero-structures: Incorporation of plasmonic Ag nanostructures

    , Article New Journal of Chemistry ; Volume 42, Issue 13 , 2018 , Pages 11109-11116 ; 11440546 (ISSN) Salimi, R ; Sabbagh Alvani, A. A ; Naseri, N ; Du, S. F ; Poelman, D ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    A new plasmonic Ag hybridized CuWO4/WO3 heterostructure was successfully synthesized via a ligand-assisted sol gel method. The as-prepared plasmonic nanohybrid was thoroughly characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy, photoluminescence (PL) spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Brunauer-Emmett-Teller (BET) surface area analysis and electrochemical impedance spectroscopy (EIS). Moreover, the photocatalytic activity was evaluated by photo-degradation of methylene blue (MB) under visible light irradiation. The results indicate that the as-prepared plasmonic Ag-CuWO4/WO3 nanohybrid (compared to pure... 

    Complete steric exclusion of ions and proton transport through confined monolayer water

    , Article Science ; Volume 363, Issue 6423 , 2019 , Pages 145-148 ; 00368075 (ISSN) Gopinadhan, K ; Hu, S ; Esfandiar, A ; Lozada Hidalgo, M ; Wang, F. C ; Yang, Q ; Tyurnina, A. V ; Keerthi, A ; Radha, B ; Geim, A. K ; Sharif University of Technology
    American Association for the Advancement of Science  2019
    Abstract
    It has long been an aspirational goal to create artificial structures that allow fast permeation of water but reject even the smallest hydrated ions, replicating the feat achieved by nature in protein channels (e.g., aquaporins). Despite recent progress in creating nanoscale pores and capillaries, these structures still remain distinctly larger than protein channels. We report capillaries made by effectively extracting one atomic plane from bulk crystals, which leaves a two-dimensional slit of a few angstroms in height. Water moves through these capillaries with little resistance, whereas no permeation could be detected even for such small ions as Na + and Cl − . Only protons (H + ) can... 

    Visualising structural modification of patterned graphene nanoribbons using tip-enhanced Raman spectroscopy

    , Article Chemical Communications ; Volume 57, Issue 56 , 2021 , Pages 6895-6898 ; 13597345 (ISSN) Su, W ; Esfandiar, A ; Lancry, O ; Shao, J ; Kumar, N ; Chaigneau, M ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Graphene nanoribbons (GNRs) fabricated using electron beam lithography are investigated using tip-enhanced Raman spectroscopy (TERS) with a spatial resolution of 5 nm under ambient conditions. High-resolution TERS imaging reveals a structurally modified 5-10 nm strip of disordered graphene at the edge of the GNRs. Furthermore, hyperspectral TERS imaging discovers the presence of nanoscale organic contaminants on the GNRs. These results pave the way for nanoscale chemical and structural characterisation of graphene-based devices using TERS. © The Royal Society of Chemistry 2021  

    Efficient simulation of resonance Raman spectra with tight-binding approximations to density functional theory

    , Article Journal of Chemical Physics ; Volume 157, Issue 8 , Volume 157, Issue 8 , 2022 ; 00219606 (ISSN) Ashtari Jafari, S ; Jamshidi, Z ; Visscher, L ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Resonance Raman spectroscopy has long been established as one of the most sensitive techniques for detection, structure characterization, and probing the excited-state dynamics of biochemical systems. However, the analysis of resonance Raman spectra is much facilitated when measurements are accompanied by Density Functional Theory (DFT) calculations that are expensive for large biomolecules. In this work, resonance Raman spectra are therefore computed with the Density Functional Tight-Binding (DFTB) method in the time-dependent excited-state gradient approximation. To test the accuracy of the tight-binding approximations, this method is first applied to typical resonance Raman benchmark... 

    Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells

    , Article Materials Science and Engineering C ; Volume 33, Issue 3 , 2013 , Pages 1498-1505 ; 09284931 (ISSN) Abdolahad, M ; Janmaleki, M ; Mohajerzadeh, S ; Akhavan, O ; Abbasi, S ; Sharif University of Technology
    2013
    Abstract
    Green tea-reduced graphene oxide (GT-rGO) sheets have been exploited for high efficiency near infrared (NIR) photothermal therapy of HT29 and SW48 colon cancer cells. The biocompatibility of GT-rGO sheets was investigated by means of MTT assays. The polyphenol constituents of GT-rGO act as effective targeting ligands for the attachment of rGO to the surface of cancer cells, as confirmed by the cell granularity test in flow cytometry assays and also by scanning electron microscopy. The photo-thermal destruction of higher metastatic cancer cells (SW48) is found to be more than 20% higher than that of the lower metastatic one (HT29). The photo-destruction efficiency factor of the GT-rGO is... 

    Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: A promising candidate for medical applications

    , Article Nanotechnology ; Volume 23, Issue 4 , 2012 ; 09574484 (ISSN) Behzadi, S ; Imani, M ; Yousefi, M ; Galinetto, P ; Simchi, A ; Amiri, H ; Stroeve, P ; Mahmoudi, M ; Sharif University of Technology
    2012
    Abstract
    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses  

    Protein-nanoparticle interactions: Opportunities and challenges

    , Article Chemical Reviews ; Volume 111, Issue 9 , June , 2011 , Pages 5610-5637 ; 00092665 (ISSN) Mahmoudi, M ; Lynch, I ; Ejtehadi, M. R ; Monopoli, M. P ; Bombelli, F. B ; Laurent, S ; Sharif University of Technology
    2011
    Abstract
    The significant role of protein nanoparticle interactions in nanomedicine and nanotoxicity is emerging recently through the identification of the nanoparticles (NP) protein (biomolecule) corona. The dynamic layer of proteins and/or other biomolecules adsorbed to the nanoparticle surface determines how a NP interacts with living systems and thereby modifies the cellular responses to the NP. Ehrenberg and co-workers used cultured endothelium cells as a model for vascular transport of polystyrene NP with various functional groups, which showed that the capacity of the various NP surfaces to adsorb proteins was indicative of their tendency to associate with cells. The quantification of the... 

    Investigation of structure, vibrational and NMR spectra of oxycodone and naltrexone: A combined experimental and theoretical study

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 79, Issue 3 , 2011 , Pages 574-582 ; 13861425 (ISSN) Tavakol, H ; Esfandyari, M ; Taheri, S ; Heydari, A ; Sharif University of Technology
    Abstract
    In this work, two important opioid antagonists, naltrexone and oxycodone, were prepared from thebaine and were characterized by IR, 1H NMR and 13C NMR spectroscopy. Moreover, computational NMR and IR parameters were obtained using density functional theory (DFT) at B3LYP/6-311++G* * level of theory. Complete NMR and vibrational assignment were carried out using the observed and calculated spectra. The IR frequencies and NMR chemical shifts, determined experimentally, were compared with those obtained theoretically from DFT calculations, showed good agreements. The RMS errors observed between experimental and calculated data for the IR absorptions are 85 and 105 cm-1, for the 1H NMR peaks are... 

    Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol

    , Article Journal of Nanoparticle Research ; Volume 17, Issue 1 , January , 2015 ; 13880764 (ISSN) Tavakoli, M. M ; Tayyebi, A ; Simchi, A ; Aashuri, H ; Outokesh, M ; Fan, Z ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Recently, hybrid graphene–quantum dot systems have attracted increasing attention for the next-generation optoelectronic devices such as ultrafast photo-detectors and solar energy harvesting. In this paper, a novel, one-step, reproducible, and solution-processed method is introduced to prepare hybrid graphene–PbS colloids by employing supercritical ethanol. In the hybrid nanocomposite, PbS quantum dots (~3 nm) are decorated on the reduced graphene oxide (rGO) nanosheets (~1 nm thickness and less than 1 micron lengths). By employing X-ray photoelectron and Raman and infrared spectroscopy techniques, it is shown that the rGO nanosheets are bonded to PbS nanocrystals through carboxylic bonds.... 

    Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method

    , Article Ultrasonics Sonochemistry ; Volume 39 , 2017 , Pages 188-196 ; 13504177 (ISSN) Amini, M ; Ramazani S. A. A ; Faghihi, M ; Fattahpour, S ; Sharif University of Technology
    Abstract
    Molybdenum disulfide (MoS2), a two-dimensional transition metal has a 2D layered structure and has recently attracted attention due to its novel catalytic properties. In this study, MoS2 has been successfully intercalated using chemical and physical intercalation techniques, while enhancing its surface properties. The final intercalated MoS2 is of many interests because of its low-dimensional and potential properties in in-situ catalysis. In this research, we report different methods to intercalate the layers of MoS2 successfully using acid-treatment, ultrasonication, oxidation and thermal shocking. The other goal of this study is to form S[dbnd]O bonds mainly because of expected enhanced... 

    Amoxicillin-loaded multilayer pullulan-based nanofibers maintain long-term antibacterial properties with tunable release profile for topical skin delivery applications

    , Article International Journal of Biological Macromolecules ; Volume 215 , 2022 , Pages 413-423 ; 01418130 (ISSN) Ajalloueian, F ; Asgari, S ; Guerra, P. R ; Chamorro, C. I ; Ilchenco, O ; Piqueras, S ; Fossum, M ; Boisen, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Unique physiochemical and biological properties of nanofibers along with the choice of a wide variety of materials for both fabrication and tunable release patterns make nanofibers an ideal option for drug delivery. Loading antibacterial agents into nanofibers has attracted great deal of attention. Whilst there are several studies focusing on applying new generations of antibacterial materials, antibiotics are still the gold standard in clinical applications. Therefore, we aimed at introducing antibiotic-loaded nanofiber substrates with potential for topical skin delivery applications, reduced consumption of antibiotics and increased storage time. We applied Amoxicillin (AMX) as a model drug... 

    Direct production of carbon nanotubes decorated with Cu2O by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate

    , Article Journal of Nanoparticle Research ; Volume 13, Issue 10 , October , 2011 , Pages 4681-4689 ; 13880764 (ISSN) Nayeb Sadeghi, S ; Shafiekhani, A ; Vesaghi, M. A ; Sharif University of Technology
    2011
    Abstract
    Carbon nanotubes (CNTs) decorated with Cu2O particles were grown on a Ni catalyst layer deposited on a Cu substrate by thermal chemical vapor deposition from liquid petroleum gas. Ni catalyst nanoparticles with different sizes were produced in an electroplating system at 45 °C using the corrosive effect of H2SO4 which was added to solution. These nanoparticles provide the nucleation sites for CNT growth avoiding the need for a buffer layer. The surface morphology of the Ni catalyst films and CNT growth over this catalyst was studied by scanning electron microscopy (SEM). High temperature surface segregation of the Cu substrate into the Ni catalyst layer and its exposition to O2 at... 

    Toxicity of graphene and graphene oxide nanowalls against bacteria

    , Article ACS Nano ; Volume 4, Issue 10 , October , 2010 , Pages 5731-5736 ; 19360851 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2010
    Abstract
    Bacterial toxicity of graphene nanosheets in the form of graphene nanowalls deposited on stainless steel substrates was investigated for both Gram-positive and Gram-negative models of bacteria. The graphene oxide nanowalls were obtained by electrophoretic deposition of Mg2+-graphene oxide nanosheets synthesized by a chemical exfoliation method. On the basis of measuring the efflux of cytoplasmic materials of the bacteria, it was found that the cell membrane damage of the bacteria caused by direct contact of the bacteria with the extremely sharp edges of the nanowalls was the effective mechanism in the bacterial inactivation. In this regard, the Gram-negative Escherichia coli bacteria with an... 

    The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets

    , Article Biomedical Materials (Bristol) ; Volume 11, Issue 2 , 2016 ; 17486041 (ISSN) Mahmoudifard, M ; Soleimani, M ; Hatamie, S ; Zamanlui, S ; Ranjbarvan, P ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay. The muscle satellite cells enriched by a pre-plating technique were... 

    Noble metal nanostructures in optical biosensors: basics, and their introduction to anti-doping detection

    , Article TrAC - Trends in Analytical Chemistry ; Volume 100 , 2018 , Pages 116-135 ; 01659936 (ISSN) Malekzad, H ; Sahandi Zangabad, P ; Mohammadi, H ; Sadroddini, M ; Jafari, Z ; Mahlooji, N ; Abbaspour, S ; Gholami, S ; Ghanbarpoor, M ; Pashazadeh, R ; Beyzavi, A ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered. We review different classes of recently-developed plasmonic biosensors for analytic determination... 

    Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework

    , Article Materials Science and Engineering C ; Volume 104 , 2019 ; 09284931 (ISSN) Hatamie, S ; Ahadian, M. M ; Soufi Zomorod, M ; Torabi, S ; Babaie, A ; Hosseinzadeh, S ; Soleimani, M ; Hatami, N ; Wei, Z. H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Metal-organic framework (MOF) based graphene oxide (GO) recently merits of attention because of the relative correspondence of GO with metal ions and organic binding linkers. Furthermore, introducing the GO to the Co-MOF to make a new nanoporous hybrid have are improved the selectivity and stability of the Co-MOF. Here the graphene oxide/cobalt metal organic framework (GO/Co-MOF) was synthesized by a solvothermal process using cobalt salt and terephthalic acid and used for biocidal activity, against the growth of the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. X-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy were confirmed...