Loading...
Search for: rapid-expansion
0.007 seconds

    Drug nano-particles formation by supercritical rapid expansion method; operational condition effects investigation

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 30, Issue 1 , 2011 , Pages 7-15 ; 10219986 (ISSN) Zabihi, F ; Akbarnejad, M. M ; Vaziri Yazdi, A ; Arjomand, M ; Safekordi, A. A ; Sharif University of Technology
    2011
    Abstract
    Dissolution pressure and nozzle temperature effects on particle size and distribution were investigated for RESS (Rapid Expansion of Supercritical Solution) process. Supercritical CO2 was used as solvent and Ibuprofen was applied as the model component in all runs. The resulting Ibuprofen nano-particles (about 50 nm in optimized runs) were analyzed by SEM and laser diffraction particle size analyzer systems. Results show that in low supercritical pressure ranges, depending on the solvent and solid component properties (Lower than 105 bar for Ibuprofen-CO2 system), nozzle temperature should be as low as possible (80-90 °C for Ibuprofen-CO2 system). In the other hand in high supercritical... 

    Experimental Study and Modelling of Ultrafine Particles Formation by Using the Supercritical Fluids

    , Ph.D. Dissertation Sharif University of Technology Karimi Sabet, Javad (Author) ; Gotbi, Cyrus (Supervisor) ; Khanchi, AliReza (Supervisor) ; Farhadpour, Farhad (Co-Advisor) ; Dorkoosh, Farid (Co-Advisor)
    Abstract
    In this research, we focused on demonstration of features and advantages of supercritical fluids technology to formation of fine particles (nano and micro scales) from bulk materials (solid) and synthesized metal oxides nanoparticles. Therefore, using two different fluids, carbon dioxide and water, and two completely different methods, the Rapid expansion of supercritical solution and supercritical hydrothermal, were used to produce fine particles of drug (acetaminophen) and nano metal oxide (zirconium dioxide and bismuth ferrite). The summary of this research are as follows:1. The solubility of acetaminophen in SuperCritical-Carbon Dioxide (SC-CO2) with and without menthol as a cosolvent... 

    Application of response surface methodology for optimization of paracetamol particles formation by RESS method

    , Article Journal of Nanomaterials ; Volume 2012 , 2012 ; 16874110 (ISSN) Karimi Sabet, J ; Ghotbi, C ; Dorkoosh, F ; Sharif University of Technology
    2012
    Abstract
    Ultrafine particles of paracetamol were produced by Rapid Expansion of Supercritical Solution (RESS). The experiments were conducted to investigate the effects of extraction temperature (313353K), extraction pressure (1018MPa), preexpansion temperature (363403K), and postexpansion temperature (273323 K) on particles size and morphology of paracetamol particles. The characterization of the particles was determined by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Liquid Chromatography/Mass Spectrometry (LC-MS) analysis. The average particle size of the original paracetamol was 20.8m, while the average particle size of paracetamol after nanonization via the...