Loading...
Search for: rarefied-gas-flow
0.011 seconds

    Permeability correlation with porosity and Knudsen number for rarefied gas flow in Sierpinski carpets

    , Article Journal of Natural Gas Science and Engineering ; Volume 56 , 2018 , Pages 549-567 ; 18755100 (ISSN) Rostamzadeh, H ; Salimi, M. R ; Taeibi Rahni, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In recent years, application of porous media is highlighted among researchers due to their wide range of usability in micro-scale problems, such as gas reservoirs, micro-filtering, heat exchangers, etc. With this respect, the accurate description of flow behavior using governing equations based on the continuum assumption is not valid since the mean free path is comparable to the characteristics length of the problem. For this purpose, a simple methodology for diffusion reflection boundary condition is developed and validated for two valuable benchmarks, namely micro-channel flow and fractal porous media, where the results were in good agreement with literature. Then, pore-scale simulation... 

    Pore-scale modeling of rarefied gas flow in fractal micro-porous media, using lattice Boltzmann method (LBM)

    , Article Journal of Thermal Analysis and Calorimetry ; 2019 , Pages 1-12 ; 13886150 (ISSN) Rostamzadeh, H ; Salimi, M. R ; Taeibi Rahni, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Due to the widespread use of rarefied gas flow in micro-porous media in industrial and engineering problems, a pore-scale modeling of rarefied gas flow through two micro-porous media with fractal geometries is presented, using lattice Boltzmann method. For this purpose, square- and circular-based Sierpinski carpets with fractal geometries are selected due to their inherent behavior for real porous media. Diffusive reflection slip model is used and developed for these porous media through this study. With this respect, the planar Poiseuille flow is selected as a benchmark and validated with the literature. The effect of Knudsen number (Kn) on the permeability is investigated and compared in... 

    DSMC simulation of heat transfer in subsonic rarefied gas flows through micro/nanochannels imposing a constant inflow/wall temperature difference

    , Article 41st AIAA Fluid Dynamics Conference and Exhibit ; 2011 ; 9781600869471 (ISBN) Darbandi, M ; Karchani, A ; Akhlaghi, H ; Mosayebi, G ; Schneider, G. E ; Sharif University of Technology
    Abstract
    We use the direct simulation Monte Carlo (DSMC) method and investigate the subsonic rarefied gas flow through micro/nanochannels, imposing a constant pressure ratio and a constant temperature difference between the inflow and wall temperature. We further study the heat transfer characteristics of subsonic nitrogen gas flow under this imposed temperature difference. We show that, specifying a higher temperature magnitude would lead to more rarefactions even imposing a fixed temperature difference. This consequently results in a higher wall heat flux rate for a fixed inflow-wall temperature difference. Our investigating shows that the number of simulated particles need to increase suitably if... 

    Shock-wave-detection technique for high-speed rarefied-gas flows

    , Article AIAA Journal ; Volume 55, Issue 11 , 2017 , Pages 3747-3756 ; 00011452 (ISSN) Akhlaghi, H ; Daliri, A ; Soltani, M. R ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2017
    Abstract
    This paper introduces a shock-wave-detection technique based on the schlieren imaging for continuum and rarefied-gas flows. The scheme is applicable for any existing two-dimensional flowfields obtained by experimental or numerical approaches. A Gaussian distribution for a schlieren function within the shock-wave region is considered. This enables the authors to access any desired locations through the shock (e.g., shock center, or leading- and trailing-edge locations). The bow shock-wave profile is described via a rational function, which could be employed for the estimation of shock angle. The relation between pre- and postshock flow properties along the shock wave with a high resolution... 

    Pore-scale modeling of rarefied gas flow in fractal micro-porous media, using lattice Boltzmann method (LBM)

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 135, Issue 3 , 2019 , Pages 1931-1942 ; 13886150 (ISSN) Rostamzadeh, H ; Salimi, M. R ; Taeibi Rahni, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Due to the widespread use of rarefied gas flow in micro-porous media in industrial and engineering problems, a pore-scale modeling of rarefied gas flow through two micro-porous media with fractal geometries is presented, using lattice Boltzmann method. For this purpose, square- and circular-based Sierpinski carpets with fractal geometries are selected due to their inherent behavior for real porous media. Diffusive reflection slip model is used and developed for these porous media through this study. With this respect, the planar Poiseuille flow is selected as a benchmark and validated with the literature. The effect of Knudsen number (Kn) on the permeability is investigated and compared in... 

    Shock polar investigation in supersonic rarefied gas flows over a circular cylinder

    , Article Physics of Fluids ; Volume 33, Issue 5 , 2021 ; 10706631 (ISSN) Akhlaghi, H ; Roohi, E ; Daliri, A ; Soltani, M. R ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Well-known polars in classical shock wave theory, that is, flow deflection angle-shock angle (θ-β), hodograph (u*,v*), and pressure deflection (θ-P*) diagrams, are investigated for the rarefied gas flows using a recently proposed shock wave detection technique by Akhlaghi and coworkers. The agreement between the obtained polars with the analytical relations in classical shock wave theory has been shown in the continuum limit for the cases of supersonic flow over the wedge and cylinder geometries. Investigations are performed using the RGS2D direct simulation Monte Carlo solver for supersonic gas flows over a circular cylinder at continuum limit and Kn = 10-4, 10-3, 0.01, 0.03, 0.07, and... 

    Shock polar investigation in supersonic rarefied gas flows over a circular cylinder

    , Article Physics of Fluids ; Volume 33, Issue 5 , 2021 ; 10706631 (ISSN) Akhlaghi, H ; Roohi, E ; Daliri, A ; Soltani, M. R ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Well-known polars in classical shock wave theory, that is, flow deflection angle-shock angle (θ-β), hodograph (u*,v*), and pressure deflection (θ-P*) diagrams, are investigated for the rarefied gas flows using a recently proposed shock wave detection technique by Akhlaghi and coworkers. The agreement between the obtained polars with the analytical relations in classical shock wave theory has been shown in the continuum limit for the cases of supersonic flow over the wedge and cylinder geometries. Investigations are performed using the RGS2D direct simulation Monte Carlo solver for supersonic gas flows over a circular cylinder at continuum limit and Kn = 10-4, 10-3, 0.01, 0.03, 0.07, and... 

    Numerical simulation of confined nano-impinging jet in microscale cooling application using DSMC method

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; Issue PARTS A AND B , 2010 , Pages 359-366 ; 9780791854501 (ISBN) Darbandi, M ; Akhlaghi, H ; Karchani, A ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    In this study, we simulate rarefied gas flow through a confined nano-impinging jet using direct simulation Monte Carlo (DSMC) method. The effects of geometrical parameters, pressure ratio, and wall conditions on the heat transfer from a hot surface are examined. Hot surface modeled via diffusive constant wall temperature. Various inlet/confining surface conditions such as specular, adiabatic, and constant temperature are implemented and the effects of them on the wall heat flux rates are studied. The results show that Knudsen number, velocity slip, and temperature jump are main reasons which specify magnitudes of wall heat flux rates. Among all geometrical parameters, H/W ratio has the... 

    Viscous dissipation and rarefaction effects on laminar forced convection in microchannels

    , Article Journal of Heat Transfer ; Volume 132, Issue 7 , 2010 , Pages 1-12 ; 00221481 (ISSN) Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    Fluid flow in microchannels has some characteristics, which one of them is rarefaction effect related with gas flow. In the present work, hydrodynamically and thermally fully developed laminar forced convection heat transfer of a rarefied gas flow in two microgeometries is studied, namely, microannulus and parallel plate microchannel. The rarefaction effects are taken into consideration using first-order slip velocity and temperature jump boundary conditions. Viscous heating is also included for either the wall heating or the wall cooling case. Closed form expressions are obtained for dimensionless temperature distribution and Nusselt number. The results demonstrate that for both geometries,... 

    Laminar forced convection in annular microchannels with slip flow regime

    , Article 7th International Conference on Nanochannels, Microchannels, and Minichannels, 22 June 2009 through 24 June 2009 ; Issue PART A , 2009 , Pages 353-361 ; 9780791843499 (ISBN) Sadeghi, A ; Asgarshamsi, A. H ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Fluid flow and heat transfer at microscale have attracted an important research interest in recent years due to the rapid development of microelectromechanical systems (MEMS). Fluid flow in microdevices has some characteristics which one of them is rarefaction effect related with gas flow. In this research, hydrodynamically and thermally fully developed laminar rarefied gas flow in annular microducts is studied using slip flow boundary conditions. Two different cases of the thermal boundary conditions are considered, namely: uniform temperature at the outer wall and adiabatic inner wall (Case A) and uniform temperature at the inner wall and adiabatic outer wall (Case B). Using the previously... 

    Physical aspects of rarefied gas flow in micro to nano scale geometries using DSMC

    , Article 39th AIAA Fluid Dynamics Conference, 22 June 2009 through 25 June 2009, San Antonio, TX ; 2009 ; 9781563479755 (ISBN) Roohi, E ; Darbandi, M ; Mirjalili, V ; Schneider, G. E ; Sharif University of Technology
    Abstract
    Rarefied gas flow in micro/nano electro mechanical systems (MEMS/NEMS) does not perform exactly as that in macro-scale devices. The main goal in this study is to investigate mixed subsonic-supersonic flows in micro/nano channels and nozzles and to provide physical descriptions on their behaviors. We use DSMC method as a reliable numerical tool to extend our simulation. It is because the DSMC provides accurate solution for the Boltzmann equations over the entire range of rarefied flow regime or Knudsen numbers. As is known, the appearance of oblique/normal shocks at the inlet of a channel or a nozzle adds to the complexity of internal flow field analyses. We found some very unique physical... 

    Analysis of laminar flow in the entrance region of parallel plate microchannels for slip flow

    , Article Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, ICNMM2009, 22 June 2009 through 24 June 2009, Pohang ; Issue PART A , 2009 , Pages 345-352 ; 9780791843499 (ISBN) Sadeghi, A ; Asgarshamsi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Microscale fluid dynamics has received intensive interest due to the emergence of microelectromechanical systems (MEMS) technology. Fluid flow in microdevices has some characteristics which one of them is rarefaction effect related with gas flow. In this work, the steady state laminar rarefied gas flow in the entrance region of parallel plate microchannels is investigated by the integral method with slip flow conditions at solid surface. The effects of Knudsen number on friction factor and Nusselt number are presented in graphical form as well as analytical form. Also the effect of Knudsen number on hydrodynamic entry length is presented. The results show that as Knudsen number increases the... 

    Simulation of rarefied gas flows in MEMS/NEMS using a molecular method

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009 ; Volume 1, Issue PART B , 2009 , Pages 1039-1044 ; 9780791843727 (ISBN) Ghezel Sofloo, H ; Ebrahimi, R ; Shams, A ; Sharif University of Technology
    Abstract
    In this work, the development of a two-dimensional Direct Simulation Monte Carlo (DSMC) Program for pressure boundaries using unstructured cells and its applications to typical micro-scale gas flows are described. For the molecular collision kinetics, variable hard sphere molecular model and no time counter collision sampling scheme have been used. Applications to micro-scale gas flows include micro-nozzel, nano channel and slider air bearing.The aim is to further test the treatment of pressure boundaries. For slider air bearing gas flows of the computer hard drive, the simulated gas pressures, at different rotating speeds, have a very good agreement with previous studies. The applicability... 

    Study of temperature and velocity distribution of rarefied gas flow in micro-nano channels

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009, Vail, CO ; Volume 1, Issue PART B , 2009 , Pages 1045-1050 ; 9780791843727 (ISBN) Ghezel Sofloo, H ; Shams, A ; Ebrahimi, R ; Sharif University of Technology
    Abstract
    This paper deals with simulation of transport phenomena in micro and nano pores. The number of cavities and the cavity radius were estimated by using Henry's law for adsorption of Argon onto ZSM-5 and NaX zeolites. This work showed both of zeolites have pores with average size less than 1 nm. Then with using micro- nano channel assumption instead of micro-nano pores, gas flow and heat transfer were investigated. Subsonic nonideal gas flow and heat transfer for different Knudsen number are investigated numerically using the Direct Simulation Monte Carlo method modified with a consistent Boltzamnn algorithm. The collision rate is also modified based on the Enskog theory for dense gas. It is...