Loading...
Search for: ratiometric
0.005 seconds

    Design of a ratiometric fluorescence nanoprobe to detect plasma levels of levodopa

    , Article Microchemical Journal ; Volume 148 , 2019 , Pages 591-596 ; 0026265X (ISSN) Moslehipour, A ; Bigdeli, A ; Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    Simply obtained by the oxidation of levodopa in alkaline media, polylevodopa nanoparticles are able to quench the fluorescence emission of CdTe quantum dots (QDs) via energy transfer mechanism. The extent of this quenching can be exploited for the quantification of levodopa, as an important therapeutic agent in the treatment of Parkinson's disease. However, to effectively improve the detection performance, in this study, we have designed a ratiometric probe by making use of variations in both the emission of QDs and the intrinsic emission of polylevodopa nanoparticles. The enhanced sensitivity, in particular, arose from the measurement of the ratio of fluorescence intensities at two... 

    Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review

    , Article Analytica Chimica Acta ; Volume 1079 , 2019 , Pages 30-58 ; 00032670 (ISSN) Bigdeli, A ; Ghasemi, F ; Abbasi Moayed, S ; Shahrajabian, M ; Fahimi Kashani, N ; Jafarinejad, S ; Farahmand Nejad, M. A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Signal generation techniques for visual detection of analytes have received a great deal of attention in various sensing fields. These approaches are considered to be advantageous when instrumentation cannot be employed, such as for on-site assays, point-of-care tests, and he althcare diagnostics in resource-constrained areas. Amongst various visual detection approaches explored for non-invasive quantitative measurements, ratiometric fluorescence sensing has received particular attention as a potential method to overcome the limitations of intensity-based probes. This technique relies on changes in the intensity of two or more emission bands (induced by an analyte), resulting in an effective... 

    A wide-color-varying ratiometric nanoprobe for detection of norepinephrine in urine samples

    , Article Analytica Chimica Acta ; Volume 1039 , 2018 , Pages 124-131 ; 00032670 (ISSN) Farahmand Nejad, M. A ; Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Owing to its dual role as a hormone and neurotransmitter, norepinephrine (NE) detection is of great significance to biomedical diagnosis. In the present work, we have explored intense green fluorescence of poly (norepinephrine) (PNE) nanoparticles synthesized by oxidizing NE in alkaline condition, in combination with red fluorescent bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) for naked-eye detection of NE. The effect of sodium hydroxide on the emission behavior of NE was studied. The surface morphology and optical properties of PNE nanoparticles were characterized by UV–Vis, fluorescence, FTIR, Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS)... 

    A new strategy to design colorful ratiometric probes and its application to fluorescent detection of Hg(II)

    , Article Sensors and Actuators, B: Chemical ; Volume 259 , 2018 , Pages 894-899 ; 09254005 (ISSN) Ghasemi, F ; Hormozi Nezhad, M. R ; Mahmoudi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A new strategy has been proposed to expand color-tunability of ratiometric fluorescent probes. It was shown that the combination of blue emissive color (as an internal standard) and yellow emissive color (as a probe) is an efficient way to create an extensive color range in ratiometric probes. However, due to the nature of the interaction between the analyte and the probe in terms of fluorescence quenching, occurance of the redshift in the emission is the major provision of such a probe. Our developed ratiometric fluorescence probe consists of blue emissive carbon dots (BCDs) and thioglycolic acid (TGA)-capped yellow emissive cadmium telluride (CdTe) quantum dots (YQDs). The ratiometric... 

    Determination and identification of nitroaromatic explosives by a double-emitter sensor array

    , Article Talanta ; Volume 201 , 2019 , Pages 230-236 ; 00399140 (ISSN) Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Detection of nitroaromatic explosives is of strong concern because of human health, public safety, environment, and military issues. In this study, we present a ratiometric sensor array for detection and discrimination of widely-used nitroaromatics (i.e., 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenol (TNP), and 2,4-dinitrotoluene (DNT)). In the design of sensor elements (SE) we employ blue emissive carbon dots (BCDs) in combination with yellow (SE-A) and red (SE-B) emissive cadmium telluride quantum dots (CdTe QDs). The fluorescence intensity of BCDs, YQDs, and RQDs is quenched by TNT, DNT, and TNP in various degrees. Both TNT and TNP cause the quenching and spectral shift of BCDs (TNT... 

    A ratiometric fluorescence nanoprobe using CdTe QDs for fast detection of carbaryl insecticide in apple

    , Article Talanta ; Volume 221 , 2021 ; 00399140 (ISSN) Shahdost fard, F ; Fahimi Kashani, N ; Hormozi nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this study, a novel, simple and sensitive ratiometric fluorescence method is presented for the detection of very low quantities of the carbaryl in Iranian apple using cadmium telluride quantum dots (CdTe QDs) nanoprobe. The principle of the proposed strategy relies on the rapid hydrolysis of the carbaryl under an alkaline condition and production of the 1-naphthol with a blue emission at 470 nm. Besides, using the CdTe QDs with a yellow emission at 580 nm, as a reference, improves the visual tracking of carbaryl through changes in color tonality. The herein described methodology is applied for enzyme-free visual detection of carbaryl with satisfactory results in the presence of other... 

    Development of Ratiometric Sensors Based on Fluorescent Nanostructures for Naked Eye Detection

    , Ph.D. Dissertation Sharif University of Technology Farahmand Nejad, Mohammad Amin (Author) ; Hormozi-Nezhad, Mohammad Reza (Supervisor)
    Abstract
    In the first part of this research, we have developed a simple and effective ratiometric fluorescence sensor for selective detection of dopamine (DA) in alkaline media by simply mixing thioglycolic acid (TGA) functionalized orange fluorescent cadmium telluride (CdTe) quantum dots (QDs) with amino-functionalized blue fluorescent carbon nanodots (CDs). Under a single excitation wavelength of 365 nm, the sensor exhibits dual-emissions centered at 445 and 603 nm. The fluorescence of CdTe QDs is selectively quenched by DA, whereas the fluorescence of CDs is insensitive to the analyte. In the presence of different amounts of DA, the variations in the dual emission intensity ratios exhibit a... 

    Designing a Ratiometric Probe for Naked Eye Detection of Hydrogen Peroxide

    , M.Sc. Thesis Sharif University of Technology Mohammadpour, Fatemeh (Author) ; Hormozinezhad, Mohammad Reza (Supervisor)
    Abstract
    Hydrogen peroxide (H2O2) is of great importance in numerous fields such as pharmaceuticals, mining, textile, environmental and food industry. Therefore, the development of low cost, on-site, and uncomplicated H2O2 sensors are of high interest. To date, colloidal quantum dots (QDs) have been used to detect H2O2 based on the quenching of fluorescence intensity in a single wavelength. However, intensity of fluorescent signal could be easily disturbed by various factors. To overcome these undesirable effects, here, a ratiometric sensor has been developed by adding a second fluorophore (as reference) to QDs. For this purpose TGA-capped CdTe QDs were prepared. To detect H2O2, the ratiometric... 

    Design of a ratiometric fluorescent probe for naked eye detection of dopamine

    , Article Analytical Methods ; Volume 9, Issue 23 , 2017 , Pages 3505-3512 ; 17599660 (ISSN) Farahmand Nejad, M. A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Abstract
    A simple and effective ratiometric fluorescence sensor for selective detection of dopamine (DA) in alkaline media has been developed by simply mixing thioglycolic acid (TGA) functionalized orange fluorescent cadmium telluride (CdTe) quantum dots (QDs) with amino-functionalized blue fluorescent carbon nanodots (CDs). Under a single excitation wavelength of 365 nm, the sensor exhibits dual-emissions centered at 445 and 603 nm. The fluorescence of CdTe QDs is selectively quenched by DA, whereas the fluorescence of CDs is insensitive to the analyte. In the presence of different amounts of DA, the variations in the dual emission intensity ratios exhibit a continuous color change from pink to... 

    A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications

    , Article Nanoscale ; Volume 10, Issue 5 , February , 2018 , Pages 2492-2502 ; 20403364 (ISSN) Abbasi Moayed, S ; Golmohammadi, H ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    In the present study, a ratiometric fluorescent sensor array as an artificial tongue has been developed on a nanopaper platform for chemical discrimination applications. The bacterial cellulose (BC) nanopaper was utilized for the first time as a novel, flexible, and transparent substrate in the optical sensor arrays for developing high-performance artificial tongues. To fabricate this platform, the hydrophobic walls on the BC nanopaper substrates were successfully created using a laser printing technology. In addition, we have used the interesting photoluminescence (PL) properties of an immobilized ratiometric probe (carbon dot-Rhodamine B (CD-RhB) nanohybrids) on the nanopaper platform to... 

    A smart-phone based ratiometric nanoprobe for label-free detection of methyl parathion

    , Article Sensors and Actuators, B: Chemical ; Volume 322 , 2020 Fahimi Kashani, N ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The widespread use of pesticides in pest management has boosted the demands for developing highly sensitive probes for on-site monitoring. Herein we presented a sensitive enzyme-free ratiometric probe for determination of methyl parathion (MP), as an organophosphate pesticide using TGA-capped CdTe QDs and carbon dots (CDs). Unlike previous methods in which hydrolysis product of MP is instrumental in the response of the sensors, here, self-assembly of cetyltrimethylammonium bromide (CTAB) on the surface of non-modified yellow-emissive CdTe QDs facilitates the quenching of CTAB-QDs upon addition of MP while the fluorescence intensity of CDs remains constant. Using a smartphone, the ratiometric... 

    Visual recognition of tryptophan enantiomers using chiral self assemblies of quantum dots

    , Article ACS Applied Nano Materials ; 2021 ; 25740970 (ISSN) Fahimi Kashani, N ; Jafar Nezhad Ivrigh, Z ; Bigdeli, A ; Hormozi Nezhad, M.R ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Discrimination of chiral targets is generally achieved with chiral nanomaterials. However, the limited number of intrinsic chiral nanostructures as well as their complex synthesis procedure has led to the production of chirality-induced nanomaterials as alternatives. Chirality can be induced in nanomaterials by either chirality transfer or the formation of chiral assemblies. Using the latter approach, in this work, we have provided chiral supramolecular assemblies of CdTe quantum dots (QDs) from achiral starting materials. CTAB-QD assemblies showed chiroptical activities, and their orange emission in combination with the blue emission of carbon dots was utilized as a ratiometric chiral... 

    In situ LIF temperature measurements in aqueous ammonium chloride solution during uni-directional solidification

    , Article Experiments in Fluids ; Volume 48, Issue 4 , April , 2010 , Pages 651-662 ; 07234864 (ISSN) Shafii, M. B ; Lum, C. L ; Koochesfahani, M. M ; Sharif University of Technology
    2010
    Abstract
    We present in situ whole-field measurements of the temperature field using laser-induced fluorescence in a study of bottom-chilled uni-directional solidification of aqueous ammonium chloride. We utilize a two-color, two-dye, ratiometric approach to address the significant spatial and temporal variations of laser sheet intensity field due to refractive index variations caused by the evolving concentration and temperature fields. In our work we take advantage of two temperature sensitive fluorescent dyes with opposite temperature sensitivities in order to increase the overall sensitivity and temperature resolution of the measurements. The resulting temperature sensitivity (about 4% K-1) is...