Loading...
Search for: reactants
0.006 seconds

    Kinetic study of heterogeneous catalytic hydrogenation of cyclohexene to cyclohexane in ionic liquid-alcohols mixtures

    , Article Applied Catalysis A: General ; Volume 341, Issue 1-2 , 2008 , Pages 58-64 ; 0926860X (ISSN) Khodadadi Moghaddam, M ; Habibi Yangjeh, A ; Gholami, M. R ; Sharif University of Technology
    2008
    Abstract
    Heterogeneous catalytic hydrogenation of cyclohexene, catalyzed by Pt/Al2O3, was carried out in solutions of 2-hydroxyethylammonium formate (a room temperature ionic liquid, RTIL) mixed with methanol, ethanol and propan-2-ol at 25 °C. The rate constants of the reaction in ionic liquid alcohol mixtures were higher than alcohol alone. First-order rate constant of the reaction in the RTIL relative to propan-2-ol is approximately 28. Furthermore, the rate constant of the reaction increases with the mole fraction of the ionic liquid. Single-parameter correlations of log k vs. normalized polarity parameter (ETN), hydrogen-bond acceptor basicity (β) and hydrogen-bond donor acidity (α) do not give... 

    The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor-liquid-solid (VLS) mechanism

    , Article Journal of Alloys and Compounds ; Volume 455, Issue 1-2 , 2008 , Pages 353-357 ; 09258388 (ISSN) Hejazi, S. R ; Madaah Hossein, H. R ; Ghamsari, M. S ; Sharif University of Technology
    2008
    Abstract
    Short ZnO nanorods and long ZnO nanowires have been produced on SiO2 and Si substrates by VLS and VS mechanisms via a double tube chemical vapor transport and condensation (CVTC) process. The role of reactants and droplet interfaces on the nucleation and growth of ZnO nanorods have been investigated. A conceptual model for nucleation of ZnO nanorods has been proposed by describing the half-oxidation and reduction reactions at the growth front. The importance of Zn vapor in the nucleation phenomena has been studied by changing starting materials. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and EDX analysis have been used to characterize ZnO nanorods and investigate the... 

    Modeling water content distribution in the polymer electrolyte membrane of pem fuel cell

    , Article ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology. Collocated with ASME 2011 5th International Conference on Energy Sustainability, FUELCELL 2011, 7 August 2011 through 10 August 2011, Washington, DC ; 2011 , Pages 851-858 ; 9780791854693 (ISBN) Tavakoli, B. A ; Roshandel, R ; Sharif University of Technology
    Abstract
    Models play an important role in fuel cell design and development. One of the critical problems to overcome in the proton exchange membrane (PEM) fuel cells is the water management. In this work a steady state, two dimensional, isothermal model in a single PEM fuel cell using individual computational fluid dynamics code was presented. Special attention was devoted to the water transport through the membrane which is assumed to be combined effect of diffusion, electro osmotic drag and convection. The effect of current density variation distribution on the Water content (λ) in membrane/electrode assembly (MEA) was determined. After that detailed distribution of oxygen concentration, water... 

    Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells

    , Article Renewable Energy ; Volume 41 , 2012 , Pages 86-95 ; 09601481 (ISSN) Roshandel, R ; Arbabi, F ; Moghaddam, G. K ; Sharif University of Technology
    2012
    Abstract
    Proton exchange membrane (PEM) fuel cell performance is directly related to the bipolar plate design and their channels pattern. Power enhancements can be achieved by optimal design of the type, size, or patterns of the channels. It has been realized that the bipolar plate design has significant role on reactant transport as well as water management in a PEM Fuel cell. Present work concentrates on improvements in the fuel cell performance by optimization of flow-field design and channels configurations. A three-dimensional, multi-component numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The simulation results showed excellent... 

    CVD-grown TiO2 particles as light scattering structures in dye-sensitized solar cells

    , Article RSC Advances ; Volume 2, Issue 32 , 2012 , Pages 12278-12285 ; 20462069 (ISSN) Pazoki, M ; Taghavinia, N ; Abdi, Y ; Tajabadi, F ; Boschloo, G ; Hagfeldt, A ; Sharif University of Technology
    2012
    Abstract
    Chemical vapour deposition (CVD) at atmospheric pressure, using TiCl 4 as a precursor, was used to grow nanostructured TiO2 films on glass substrates. At relatively low temperatures (∼245 °C) and using relatively high reactant concentrations, different nano-morphologies of TiO2 were formed simultaneously, such as spheres, nanowires and mesoporous structures. The TiO2 spheres were successfully applied as light-scattering particles in dye-sensitized solar cells, either by direct deposition onto electrodes in the reactor, or by preparation of a printing paste from the deposited particles. For dye-sensitized solar cells using the organic dye D35 as sensitizer and a cobalt-complex based redox... 

    An innovative three dimensional numerical model for bipolar plates to enhance the efficiency of PEM fuel cells

    , Article ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2012 6th International Conference on Energy Sustainability, FUELCELL 2012, 23 July 2012 through 26 July 2012 ; July , 2012 , Pages 351-360 ; 9780791844823 (ISBN) Arbabi, F ; Roshandel, R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2012
    Abstract
    The efficiency of proton exchange membrane (PEM) fuel cell is straightly correlated to the bipolar plate design and fluid channel arrangements. Higher produced energy can be attained by optimal design of type, size, or patterns of the channels. Previous researches showed that the bipolar plate channel design has a considerable effect on reactant distribution uniformity as well as humidity control in PEM fuel cells. This paper concentrates on enhancements in the fuel cell performance by optimization of bipolar plate design and channels configurations. A numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The results gained from... 

    Effects of different operating parameters on the particle size of silver chloride nanoparticles prepared in a spinning disk reactor

    , Article Applied Physics A: Materials Science and Processing ; Volume 120, Issue 1 , July , 2015 , Pages 105-113 ; 09478396 (ISSN) Dabir, H ; Davarpanah, M ; Ahmadpour, A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were... 

    Ni-Bi co-doped TiO2 as highly visible light response nano-photocatalyst for CO2 photo-reduction in a batch photo-reactor

    , Article Journal of CO2 Utilization ; Volume 41 , October , 2020 Nematollahi, R ; Ghotbi, C ; Khorasheh, F ; Larimi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Photocatalytic reduction of CO2 is considered as a promising strategy for production of a wide range of renewable hydrocarbon fuels by solar energy. In this investigation, a series of Ni and Bi doped TiO2 catalysts with different Ni and Bi contents were synthesized by the conventional sol-gel method and tested for CO2 photoreduction under visible light irradiation. Synthesized nano-photo-catalysts were characterized by XRD, FESEM, TEM, DRS, PL, FTIR and BET analyses. BET results indicated that the doping of Ni or/and Bi in the TiO2 framework resulted in BET specific surface area increment with respect to pure TiO2. DRS analysis showed that Ni doped TiO2, Bi doped TiO2, and co-doped samples... 

    Applicability of membrane reactor technology in industrial hydrogen producing reactions: Current effort and future directions

    , Article Journal of Industrial and Engineering Chemistry ; Volume 104 , 2021 , Pages 212-230 ; 1226086X (ISSN) Mamivand, S ; Binazadeh, M ; Sohrabi, R ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2021
    Abstract
    Potent carbon-neutral energy carriers bring a vital solution for sustained industrialization and environmental protection. Hydrogen as a novel zero-emission energy carrier offers more than twice energy per unit mass compared to other fuels. Membrane reactor technology transforms gray hydrogen to blue by selective hydrogen separation and carbon dioxide capture from the product mixture. Moreover, improved reactant conversion during reversible steam reforming of methane, methanol, and ethanol; water gas-shift; and dehydrogenation of cyclic and aliphatic hydrocarbons as well as enhanced hydrogen yield are results of selective and distributed hydrogen separation from membrane reactor. In this... 

    Kinetic modeling of pyrolysis of scrap tires

    , Article Journal of Analytical and Applied Pyrolysis ; Volume 84, Issue 2 , 2009 , Pages 157-164 ; 01652370 (ISSN) Mazloom, G ; Farhadi, F ; Khorasheh, F ; Sharif University of Technology
    2009
    Abstract
    The disposal of used tires is a major environmental problem. With increasing interest on recovery of wastes, pyrolysis is considered as an alternative process for recovering some of the value in scrap tires. An accurate kinetic model is required to predict product yields during thermal or catalytic pyrolysis of scrap tires. Pyrolysis products contain a variety of hydrocarbons over a wide boiling range. A common approach for kinetic modeling of such complex systems is lumping where each lump is defined by a boiling point range. Available experimental data for thermal and catalytic pyrolysis of scrap tires from the literature were used to evaluate two types of lumping models; discrete and... 

    Numerical simulation of non-uniform Gas diffusion layer porosity effect on polymer electrolyte membrane fuel cell performance

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 20, Issue 2 , 2007 , Pages 179-192 ; 1728-144X (ISSN) Roshandel, R ; Farhanieh, B ; Sharif University of Technology
    Materials and Energy Research Center  2007
    Abstract
    Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study the porosity variation in GDL is calculated by considering the applied pressure and the amount of water generated in the cell. A two dimensional mathematical model is developed to investigate the effect of stack compression and water generation on porosity of GDL and cell performance. The validity of... 

    The effect of fuel cell operational conditions on the water content distribution in the polymer electrolyte membrane

    , Article Renewable Energy ; Volume 36, Issue 12 , December , 2011 , Pages 3319-3331 ; 09601481 (ISSN) Tavakoli, B ; Roshandel, R ; Sharif University of Technology
    2011
    Abstract
    Models play an important role in fuel cell design and development. One of the critical problems to overcome in the proton exchange membrane (PEM) fuel cells is the water management. In this work a steady state, two-dimensional, isothermal model in a single PEM fuel cell using individual computational fluid dynamics code was presented. Special attention was devoted to the water transport through the membrane which is assumed to be combined effect of diffusion, electro-osmotic drag and convection. The effect of current density variation distribution on the water content (λ) in membrane/electrode assembly (MEA) was determined. In this work the membrane heat conductivity is considered as a...