Loading...
Search for: reaction-rate-constants
0.006 seconds

    Long-term deactivation of a commercial CoMo-Al2O3 catalyst in hydrodesulfurization of a naphtha stream

    , Article Industrial and Engineering Chemistry Research ; Volume 48, Issue 7 , 2009 , Pages 3331-3340 ; 08885885 (ISSN) Baghalha, M ; Hoseini, M ; Sharif University of Technology
    2009
    Abstract
    Long-term deactivation of a commercial CoMoγ-Al2O3 catalyst used in the hydrodesulfurization of a naphtha stream was studied using 35 months of operating data of an industrial HDS fixed bed reactor. The major sulfur-containing species of the naphtha feed was identified as 2-ethyl-4-methylthiophene (2E4MT) based on GC-MS analysis. The characterization of the industrial catalysts was performed by BET, XRD, XRF, and HCN Leco analyses. The reaction rate constant of the gas-phase hydrodesulfurization reaction was calculated by fitting the industrial reactor conversion data to the Hougen-Watson rate equation, assuming that the surface reaction between the sulfur-containing species and adsorbed... 

    Oxidative desulfurization of simulated light fuel oil and untreated kerosene

    , Article Fuel Processing Technology ; Volume 90, Issue 3 , 2009 , Pages 435-445 ; 03783820 (ISSN) Dehkordi, A.M ; Kiaei, Z ; Sobati, M.A ; Sharif University of Technology
    2009
    Abstract
    An experimental investigation was conducted on the oxidative desulfurization of model sulfur compounds such as dibenzothiophene and benzothiophene in toluene as a simulated light fuel oil with a mixture of hydrogen peroxide as the oxidant and various acids as the catalyst. The influences of various parameters including reaction temperature (T), acid to sulfur molar ratio (Acid/S), oxidant to sulfur molar ratio (O/S), type of acid, and the presence of sodium tungstate and commercial activated carbon as a co-catalyst on the fractional conversion of the model sulfur compounds were investigated. The experimental data obtained were used to determine the reaction rate constant of the model sulfur...