Loading...
Search for: reactive-power-controllers
0.006 seconds

    Probabilistic determination of pilot points for zonal voltage control

    , Article IET Generation, Transmission and Distribution ; Volume 6, Issue 1 , January , 2012 , Pages 1-10 ; 17518687 (ISSN) Amraee, T ; Soroudi, A ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    Owing to the local nature of voltage and reactive power control, the voltage control is managed in a zonal or regional basis. A new comprehensive scheme for optimal selection of pilot points is proposed in this study. The uncertainties of operational and topological disturbances of the power system are included to provide the robustness of the pilot node set. To reduce the huge number of probable states (i.e. combined states of load and topological changes), a scenario reduction technique is used. The resulted optimal control problem is solved using a new immune-based genetic algorithm. The performance of the proposed method is verified over IEEE 118-bus and realistic Iranian 1274-bus... 

    Prevention of distribution network overvoltage by adaptive droop-based active and reactive power control of PV systems

    , Article Electric Power Systems Research ; Volume 133 , 2016 , Pages 313-327 ; 03787796 (ISSN) Ghasemi, M. A ; Parniani, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Proliferation of grid-connected photovoltaic systems (PVSs) causes technical problems due to their variable and non-dispatchable generated power. High penetration of PVS in distribution networks can result in overvoltage in some operating conditions. Although this situation occurs rarely, it limits the installed capacity of PVS. In this paper, adaptive droop-based control algorithms are presented to regulate active and reactive power of PVS, with the objectives of loss minimization and increasing the PVS capacity installation without unallowable overvoltage. Operating voltage range of the PVS is divided into several intervals, and a specific control algorithm is presented for each of them.... 

    Application of state feedback controller to ensure robust d-stable operation of virtual synchronous generators

    , Article IEEE Transactions on Energy Conversion ; Volume 36, Issue 2 , 2021 , Pages 602-610 ; 08858969 (ISSN) Pourmohammad, M ; Toulabi, M ; Ranjbar, A. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This article presents a comprehensive small signal model for a virtual synchronous generator (VSG) integrated into a microgrid. In the developed state-space, active and reactive power control loops of the VSG as well as resistances, and reactances of the lines are considered. Based on this model, the robust D-stable region in terms of different values of inertia constant $(M)$, and damping coefficient $(D)$ values of the VSG is obtained. To enhance both transient performance as well as guarantee the robust D-stable operation of VSG, an optimization problem is also proposed. Moreover, a new control method is suggested to damp frequency oscillations of the microgrid. The proposed controller is... 

    An Improved Voltage and Frequency Droop Control Method for Microgrids having Inverter Based Resources, Realizing the Effect of Lines R/X

    , M.Sc. Thesis Sharif University of Technology Esmaeili Atrabi, Hamed (Author) ; Vakilian, Mehdi (Supervisor)
    Abstract
    The centralized and decentralized control approaches are the most effective control approaches to be applied in micro grids. However, practically to rerduce the cost and improve the reliability, decentralized control is usually employed. Initially, this thesis discusses the components and dynamic model of the micro grid in order to evaluate the stability. Then, it introduces the decentralized control methods which can be used in a micro grid. In the next step, a sample micro gird is studied (with high ratio of lines R/X). This microgrid has three DG plants having DC voltage sources, inverter, and LCL filter. The performance of AVR controls is evaluated by combining the PQ and droop control... 

    Improvement of Matrix Converter Performance in Application of PMSG -Driven Wind Turbine

    , Ph.D. Dissertation Sharif University of Technology Hojabri Hutaki, Hossein (Author) ; Mokhtari, Hossein (Supervisor)
    Abstract
    The use of wind energy and wind generators as an inexpensive type of renewable energy sources is increasing. Wind farms and distributed wind generators connected to the power transmission and distribution systems and microgrids, and wind generators in standalone mode of operation affect the stability and power quality of the grid. In this thesis, the performance of a matrix converter in grid connection of variable speed PMSG–driven wind turbine is improved. In this way, by transferring the matrix converter modulation matrix into the synchronous reference frame and decomposing it into the singular values, a new general method is proposed for analysis, modelling and modulation of a matrix... 

    Improvement of Steady State and Dynamic Performance of Grid-connected Photovoltaic Power Generation Systems

    , Ph.D. Dissertation Sharif University of Technology Ghasemi, Mohammad Amin (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    Global growth of electrical energy consumption and various limitations on the use of fossil fuels, such as environmental problems, rising prices and their limited available resources, have resulted in growing interest and investment in the usage of renewable energy generation, especially photovoltaic (PV) systems. Although the off-grid operation of PV systems was its dominant operation form in the past, proliferation of these systems has made the grid-connected operating mode widespread in recent years. However, their grid connection causes technical problems which need to be resolved. This thesis studies and analyses the steady state and dynamic operation of PV systems in grid-connected... 

    A decentralized self-adjusting control strategy for reactive power management in an islanded multi-bus MV microgrid

    , Article Canadian Journal of Electrical and Computer Engineering ; Volume 36, Issue 1 , 2013 , Pages 18-25 ; 08408688 (ISSN) Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    2013
    Abstract
    This paper presents a decentralized self-adjusting reactive power controller for the autonomous operation of a multi-bus medium voltage (MV) microgrid. The main objective of the proposed control strategy of each distributed generation (DG) unit is to compensate the reactive power of its local loads and to share the reactive power of the nonlocal loads among itself and other DG units. The proposed control strategy includes an improved droop controller whose parameters are adjusted according to the reactive power of the local loads. A virtual inductive impedance loop is augmented to the voltage controller to enhance the steady state and transient responses of the proposed reactive power... 

    Reactive power control of permanent-magnet synchronous wind generator with matrix converter

    , Article IEEE Transactions on Power Delivery ; Volume 28, Issue 2 , 2013 , Pages 575-584 ; 08858977 (ISSN) Hojabri, H ; Mokhtari, H ; Chang, L ; Sharif University of Technology
    2013
    Abstract
    In this paper, the reactive power control of a variable-speed permanent-magnet synchronous wind generator with a matrix converter at the grid side is improved. A generalized modulation technique based on singular value decomposition of the modulation matrix is used to model different modulation techniques and investigate their corresponding input reactive power capability. Based on this modulation technique, a new control method is proposed for the matrix converter which uses active and reactive parts of the generator current to increase the control capability of the grid-side reactive current compared to conventional modulation methods. A new control structure is also proposed which can... 

    Analysis and enhancement of low-voltage ride-through capability of brushless doubly fed induction generator

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 3 , March , 2013 , Pages 1146-1155 ; 02780046 (ISSN) Tohidi, S ; Oraee, H ; Zolghadri, M. R ; Shao, S ; Tavner, P ; Sharif University of Technology
    2013
    Abstract
    This paper discusses the dynamic behavior of the brushless doubly fed induction generator during the grid faults which lead to a decrease in the generator's terminal voltage. The variation of the fluxes, back EMFs, and currents are analyzed during and after the voltage dip. Furthermore, two alternative approaches are proposed to improve the generator ride-through capability using crowbar and series dynamic resistor circuits. Appropriate values for their resistances are calculated analytically. Finally, the coupled circuit model and the generator's speed and reactive power controllers are simulated to validate the theoretical results and the effectiveness of the proposed solutions. Moreover,... 

    Doubly fed induction generators to enhance inter-area damping based on a Robust controller: H2/ H∞ Control

    , Article SN Applied Sciences ; Volume 3, Issue 1 , 2021 ; 25233971 (ISSN) Goodarzi, A ; Ranjbar, A. M ; Dehghani, M ; Ghasemi Garpachi, M ; Ghiasi, M ; Sharif University of Technology
    Springer Nature  2021
    Abstract
    In this study, an auxiliary damping controller based on a robust controller considering the active and reactive power control loops for a doubly-fed induction generator for wind farms is proposed. The presented controller is able to improve the inter-area oscillation damping. In addition, the proposed controller applies only one accessible local signal as the input; however, it can improve the inter-area oscillation damping and, consequently the system stability for the various working conditions and uncertainties. The oscillatory modes of the system are appointed using the linear analysis. Then, the controller’s parameters are determined using the robust control approaches (H∞/ H2) with the...