Loading...
Search for: reactive-power-management
0.006 seconds

    A decentralized self-adjusting control strategy for reactive power management in an islanded multi-bus MV microgrid

    , Article Canadian Journal of Electrical and Computer Engineering ; Volume 36, Issue 1 , 2013 , Pages 18-25 ; 08408688 (ISSN) Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    2013
    Abstract
    This paper presents a decentralized self-adjusting reactive power controller for the autonomous operation of a multi-bus medium voltage (MV) microgrid. The main objective of the proposed control strategy of each distributed generation (DG) unit is to compensate the reactive power of its local loads and to share the reactive power of the nonlocal loads among itself and other DG units. The proposed control strategy includes an improved droop controller whose parameters are adjusted according to the reactive power of the local loads. A virtual inductive impedance loop is augmented to the voltage controller to enhance the steady state and transient responses of the proposed reactive power... 

    Voltage stability improvement through centralized reactive power management on the Smart Grid

    , Article 2012 IEEE PES Innovative Smart Grid Technologies, ISGT 2012, 16 January 2012 through 20 January 2012 ; 2012 ; 9781457721588 (ISBN) Kazari, H ; Abbaspour-Tehrani Fard, A ; Dobakhshari, A. S ; Ranjbar, A. M ; Sharif University of Technology
    2012
    Abstract
    With the increasing penetration of renewable energies as distributed generation (DG) in power systems, technical problems arise in both distribution and transmission system level. Voltage rise is the main barrier for connection of DGs in rural areas, while excessive reactive power demand from transmission system is the major concern for Transmission System Operators (TSO). Here, a centralized control scheme based on the Smart Grid is proposed to reduce the impact on the transmission system voltages and improve its stability, while mitigating the voltage rise issue in the distribution network. Reactive power output of DGs, substation capacitors and tap setting of transmission transformer are... 

    Particle swarm optimization method for optimal reactive power procurement considering voltage stability

    , Article Scientia Iranica ; Volume 14, Issue 6 , 2007 , Pages 534-545 ; 10263098 (ISSN) Mozafari, B ; Amraee, T ; Ranjbar, A. M ; Mirjafari, M ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    This paper presents and utilizes an Improved Particle Swarm Optimization algorithm (IPSO) for reactive power management in restructured power systems. Reactive power procurement is modeled as a Security Constraint Optimal Power Flow (SCOPF), which incorporates a voltage stability problem. This is a major concern in power system control and operation. The model attempts to minimize the cost of reactive power procurement and energy losses as a main objective, while the technical criteria and voltage stability margin, especially, are treated as soft constraints. From a mathematical point of view, the reactive power market can be expressed as a nonlinear non-convex optimization problem with...