Loading...
Search for: reactive-species
0.006 seconds

    Mechanism Study of Photocatalytic Degradation of Several Hazardous Materials Using TiO2 Based Nano-sized Multi-Functionals Photocatalyst

    , Ph.D. Dissertation Sharif University of Technology Elahifard, Mohammad Reza (Author) ; Gholami, Mohammad Reza (Supervisor) ; Haghighi, Saeid (Supervisor)
    Abstract
    Apatite-coated Ag/AgBr/TiO2 was prepared by deposition of Ag as noble metal to generate electron-hole pairs by extending the excitation wavelength to visible light region, AgBr as photo-sensitizer to increasing yield of photo catalyst, and apatite as adsorption bio ceramic for adsorbing pollutants and micro organisms respectively. The bactericidal experiments in dark media indicated that only novel catalyst show inhibiting growth of bacteria. In this case Transmission electron microscopy image illustrated that catalyst nano particles adhere to the outer membrane of the cell and acts as inhibitor to nourish of bacteria from around media. The mechanism for deactivation E-Coli and B.Sub in the... 

    Photocatalytic mechanism of action of apatite-coated Ag=AgBr=TiO 2 on phenol and Escherichia coli and Bacillus subtilis bacteria under various conditions

    , Article Progress in Reaction Kinetics and Mechanism ; Volume 36, Issue 1 , February , 2011 , Pages 38-52 ; 14686783 (ISSN) Elahifard, M. R ; Rahimnejad, S ; Pourbaba, R ; Haghighi, S ; Gholami, M. R ; Sharif University of Technology
    2011
    Abstract
    Multi-component photocatalysts based on apatite-coated Ag=AgBr=TiO 2 were prepared by the deposition method. The effects of various kinds of apatites, with hydroxyl and fluoro substituents, on photocatalytic activity were investigated. The antibacterial processes in the dark, and under visible light, on two types of bacteria indicate that the multi-composites can inhibit the growth of bacteria by two different mechanisms. TEM images and optical microscopic data demonstrate that by attaching the nanosize catalyst to the outer membrane of the cell, the bacteria could not derive nourishment from surrounding media, i.e. this component acts as bacteria-static. The mechanism for deactivation of... 

    Vanadium oxide-supported copper ferrite nanoparticles: A reusable and highly efficient catalyst for rhodamine B degradation via activation of peroxymonosulfate

    , Article Applied Organometallic Chemistry ; Volume 35, Issue 10 , 2021 ; 02682605 (ISSN) Salami, R ; Amini, M ; Bagherzadeh, M ; Chae, K. H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    A magnetic vanadium oxide nanoparticles supported on spinel copper ferrite (CuFe2O4–VOx) are prepared, characterized, and examined for the peroxymonosulfate (PMS) activation to degrade Rhodamine B (RhB) in water solution. Interestingly, the results show that despite the inability of mixture of copper ferrite and vanadium oxides nanoparticles to the effective RhB decomposition, the prepared catalyst exhibits an excellent catalytic ability toward RhB oxidation. The influence of vital parameters, such as temperature, PMS concentration, catalyst loading, and initial pH are discussed comprehensively. The kinetic studies demonstrate that the pseudo-first-order model is well fitted for RhB...