Loading...
Search for: reactivity-controlled-compression-ignition--rcci
0.005 seconds

    The effect of diethyl ether addition on performance and emission of a reactivity controlled compression ignition engine fueled with ethanol and diesel

    , Article Energy Conversion and Management ; Volume 174 , 2018 , Pages 779-792 ; 01968904 (ISSN) Mohebbi, M ; Reyhanian, M ; Hosseini, V ; Said, M. F. M ; Abdul Aziz, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Reactivity controlled compression ignition has been introduced to implement controllable, clean, and high thermal efficiency without undermining the advantages of premixed combustion. However, simultaneous auto-ignition introduced by reactivity controlled combustion challenges the combustion under higher load operations. This experimental study incorporates a dual phase heat release concept with the purpose of improving the performance of reactivity controlled compression ignition engine. Different ratios of ethanol/diethyl-ether blends (from 0% to 40% diethyl ether and 70% premixed ratio) were applied to a light duty diesel engine at various combustion timings and engine loads. The diesel... 

    Performance and emissions of a reactivity controlled light-duty diesel engine fueled with n-butanol-diesel and gasoline

    , Article Applied Thermal Engineering ; Volume 134 , April , 2018 , Pages 214-228 ; 13594311 (ISSN) Mohebbi, M ; Reyhanian, M ; Hosseini, V ; Muhamad Said, M. F ; Aziz, A. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Reactivity Controlled Compression Ignition can be extended over a wide spectrum of fuels and is anticipated as a promising strategy in meeting current and future emission regulations. In this study, the effect of n-butanol addition on combustion characteristics and emissions in a reactivity controlled engine was investigated experimentally. Different ratios of butanol-diesel blends at different settings of EGR and premixed ratios were applied to a light duty diesel engine. The butanol-diesel blends were directly injected into the combustion chamber while gasoline was injected at the intake port. Combustion phasing was maintained at 2.7 °CA for all of test points by adjusting fuel injection... 

    An experimental study on low temperature combustion in a light duty engine fueled with diesel/CNG and biodiesel/CNG

    , Article Fuel ; Volume 262 , 2020 Ghaffarzadeh, S ; Nassiri Toosi, A ; Hosseini, V ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Low temperature combustion potentially can improve engine efficiency coupled with the benefits of low nitrogen oxides, and particulate matter emissions, and vice versa high unburned hydrocarbon and carbon oxide emissions through in-cylinder fuel reactions. In this survey, the experiments were carried out using a modified one-cylinder reactivity controlled compression ignition engine, dual-fueled diesel/compressed natural gas and biodiesel/CNG, to investigate the effects of direct injection strategies on the engine combustion efficiency and emission characteristics. Different ratios of biodiesel blends at different premixed ratios were applied to the dual-fuel engine. The results showed that...