Loading...
Search for: reactor-modeling
0.005 seconds

    A Three dimensional dynamic CFD simulation for the direct dme production in a fixed bed reactor

    , Article Computer Aided Chemical Engineering ; Volume 32 , June , 2013 , Pages 247-252 ; 15707946 (ISSN) Moradi, F ; Kazemeini, M ; Vafajoo, L ; Fattahi, M ; Sharif University of Technology
    2013
    Abstract
    Dimethyl ether (DME) as a clean fuel seems to be a superior candidate for high-quality diesel fuel in near future. In this study, a comprehensive three-dimensional dynamic heterogeneous model developed to simulate the flow behavior and catalytic coupling reactions for synthesis of the DME from hydrogenation of the CO and CO2, dehydration of methanol to dimethyl ether and water gas shift reaction in a fixed bed reactor. For this purpose, a CFD simulation was articulated where the standard k-ε model with 10% turbulence tolerations implemented. Then the concentration and temperature profiles along the reactor were determined. It was revealed that under conditions considered, a single phase... 

    Design, Fabrication and Test of a Gas Turbine Combustor Based on the GT4082 Turbocharger

    , M.Sc. Thesis Sharif University of Technology Aghayari, Majid (Author) ; Farshchi, Mohammad (Supervisor) ; Hajilou benisi, Ali (Co-Advisor)
    Abstract
    Gas turbine design and manufacturing is a complex process. It requires a true understanding of turbo machinery, materials, and manufacturing technologies. Current studyfocuses onthe design and test of a small turbo jet which is benefitted from a turbocharger. Zero dimensional analysis of engine cycle is done with MATLAB and results of program is utilized to design the combustion chamber and calibrating the nozzle. For determination of combustion chamber size, a reactor modelling is used. Simulation of flow in combustion chamber is done with a commercial program (Fluent) in order to determine other specification of combustion chamber such as hole sizing, diverging angle and etc.... 

    Comparative study of conventional steam-methane-reforming (SMR) and auto-thermal-reforming (ATR) with their hybrid sorption enhanced (SE-SMR & SE-ATR) and environmentally benign process models for the hydrogen production

    , Article Fuel ; Volume 297 , 2021 ; 00162361 (ISSN) Faheem, H. H ; Tanveer, H. U ; Abbas, S. Z ; Maqbool, F ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The paper presents a comparison of steam methane reforming (SMR), sorption enhanced steam methane reforming (SE-SMR), auto-thermal reforming (ATR), and sorption enhanced auto-thermal reforming (SE-ATR) in a fixed bed reformer for hydrogen production. A one-dimensional, unsteady-state heterogeneous reactor model for each process which includes mass and thermal dispersion in the direction of flow and axial pressure distribution, has been simulated using gPROMS® 4.0.1 model builder, while CEA and Aspen Plus® have been employed to analyze the equilibrium performance and simulate the process flowsheets of individual process respectively. The performance of the individual hydrogen production... 

    Simulation and control of membrane reactors for catalytic reduction of dissolved oxygen from water

    , Article Canadian Journal of Chemical Engineering ; 2017 ; 00084034 (ISSN) Karegar Ghavibazoo, M ; Golmakani, A ; Hosseinipoor, S ; Rokhforouz, M. R ; Sharif University of Technology
    Wiley-Liss Inc  2017
    Abstract
    Removal of dissolved oxygen (DO) from water has gained much attention in recent decades to prevent different problems such as corrosion, bio-fouling, and performance degradation in many industries. The traditional physical and chemical methods for DO removal have found wide application in industries. However, physical methods have low efficiency and chemical methods often produce undesirable products. Therefore, catalytic reduction by hydrogen has been regarded by a variety of industries recently. In this study, catalytic reduction of DO from water is examined using membrane reactors. The mathematical model of this system is developed while considering the axial dispersion, membrane... 

    Simulation and control of membrane reactors for catalytic reduction of dissolved oxygen from water

    , Article Canadian Journal of Chemical Engineering ; Volume 96, Issue 4 , 2018 , Pages 912-925 ; 00084034 (ISSN) Karegar Ghavibazoo, M ; Golmakani, A ; Hosseinipoor, S ; Rokhforouz, M. R ; Sharif University of Technology
    Wiley-Liss Inc  2018
    Abstract
    The catalytic reduction of dissolved oxygen (DO) from water was examined using membrane reactors and a mathematical model that considers axial dispersion, membrane permeation, and chemical reaction. The model is solved in steady state mode and the effect of various parameters on the DO removal was assessed. The results of steady state mode were employed as initial conditions for solving the model in dynamic mode. The impact of operating conditions, e.g., water flow rate, DO concentration of influent water, hydrogen flow rate, and hydrogen pressure on the performance of the DO process was studied. Results of the dynamic simulation suggested that hydrogen pressure is the best option to be used... 

    Reactor modelling with saturation characteristic and inter-phase magnetic coupling

    , Article International Journal of Electrical Power and Energy Systems ; Volume 123 , December , 2020 Khalilifar, M ; Shahrtash, S. M ; Fateminia, M ; Ranjbar, A. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper develops a model for nonlinear three-phase inductors with magnetic coupling between phases along with saturation characteristics for each phase. It can be used in modelling reactors and/or transformers for resonance and ferroresonance studies in non-symmetrical operation of power systems. While three phase modelling of reactors and transformers in non-symmetrical analyses play vital role; currently, time domain simulation packages provide either “detailed saturation model for three phase inductors without magnetic coupling” or “three phase inductors with magnetic coupling without saturation characteristics”. The proposed model adds a set of controllable linear coupled inductance,... 

    Integrated procedure, using differential evolution optimization of rate parameters, for design of small and accurate multistep global chemical mechanisms

    , Article Industrial and Engineering Chemistry Research ; Volume 57, Issue 10 , March , 2018 , Pages 3530-3544 ; 08885885 (ISSN) Shakeri, A ; Mazaheri, K ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Three-dimensional analysis of combustion chambers in industrial gas turbines suffers from lack of simple and accurate reduced mechanisms for oxidation of hydrocarbon fuels. Here, an integrated procedure is introduced based on a differential evolution optimization technique. The procedure is flexible and modular and allows optimization of many rate parameters of a multistep global mechanism based on many different combustion criteria and inlet or operational conditions. The procedure uses any selected chemical reactor model and any reference combustion mechanism provided. Sample design criteria used here are flame temperature, ignition delay time, and concentration of selected species,... 

    On the introduction of a qualitative variable to the neural network for reactor modeling: Feed type

    , Article Industrial and Engineering Chemistry Research ; Volume 48, Issue 8 , 2009 , Pages 3820-3824 ; 08885885 (ISSN) Ghadrdan, M ; Mehdizadeh, H ; Bozorgmehry Boozarjomehry, R ; Towfighi Darian, J ; Sharif University of Technology
    2009
    Abstract
    Thermal cracking of hydrocarbons converts them into valuable materials in the petrochemical industries. Multiplicity of the reaction routes and complexity of the mathematical approach has led us use a kind of black-box modelingsartificial neural networks. Reactor feed type plays an essential role on the product qualities. Feed type is a qualitative character. In this paper, a method is presented to introduce a range of petroleum fractions to the neural network. To introduce petroleum cuts with final boiling points of 865 °F maximum to the neural network, a real component substitute mixture is made from the original mixture. Such substitute mixture is fully defined, it has a chemical... 

    Modelling of fischer-tropsch synthesis in a fluidized bed reactor

    , Article Advanced Materials Research ; Volume 586 , 2012 , Pages 274-281 ; 10226680 (ISSN) ; 9783037855232 (ISBN) Kazemeini, M ; Maleki, R ; Fattahi, M
    2012
    Abstract
    The FT reaction involves the conversion of syngas which is derived from natural gas or coal to different kinds of products according to the operating conditions and the type of the catalyst. In other words, it is a practical way to convert solid fuel (coal) and natural gas to various hydrocarbons (C1-C60) and oxygenates such as alkanes, alkenes etc. The main products of the reaction are naphtha and gasoline. This paper deals with developing a proper product distribution model for FT process using the appropriate kinetic model, optimizing the respective rate constants while applying them in product distribution equations. The results revealed only 8.09% deviations from the olefin experimental... 

    Kinetic modeling of propane dehydrogenation over an industrial catalyst in the presence of oxygenated compounds

    , Article Reaction Kinetics, Mechanisms and Catalysis ; Volume 107, Issue 1 , 2012 , Pages 141-155 ; 18785190 (ISSN) Barghi, B ; Fattahi, M ; Khorasheh, F ; Sharif University of Technology
    Springer  2012
    Abstract
    The aim of this study was to develop an appropriate kinetic model for propane dehydrogenation (PDH) over an industrial Pt-Sn/γ-Al 2O 3 catalyst in the presence of small amounts of oxygenated compounds. Experimental data were obtained from a previous study where catalytic PDH was carried out in a laboratory scale reactor at atmospheric pressure in the temperature range of 575-620 °C in the presence of small amounts of water or methanol. The kinetics of the main dehydrogenation reaction was described and the effects of water and methanol on coke deposition and catalyst sintering were considered in a catalyst deactivation model to explain the observed optimum level in the amount of added... 

    Optimum operating conditions for direct oxidation of H2S in a fluidized bed reactor

    , Article World Academy of Science, Engineering and Technology ; Volume 77 , 2011 , Pages 411-415 ; 2010376X (ISSN) Golestani, F ; Kazemeini, M ; Fattahi, M ; Amjadia, A ; Sharif University of Technology
    Abstract
    In this research a mathematical model for direct oxidization of hydrogen sulfide into elemental sulfur in a fluidized bed reactor with external circulation was developed. As the catalyst is deactivated in the fluidized bed, it might be placed in a reduction tank in order to remove sulfur through heating above its dew point. The reactor model demonstrated via MATLAB software. It was shown that variations of H 2S conversion as well as; products formed were reasonable in comparison with corresponding results of a fixed bed reactor. Through analyzing results of this model, it became possible to propose the main optimized operating conditions for the process considered. These conditions included;... 

    Modeling of catalyst deactivation in zeolite-catalyzed alkylation of isobutane with 2-butene

    , Article Chemical Engineering Science ; Volume 65, Issue 2 , 2010 , Pages 645-650 ; 00092509 (ISSN) Hamzehlouyan, T ; Kazemeini, M ; Khorasheh, F ; Sharif University of Technology
    Abstract
    The deactivation of solid acid catalysts in liquid phase alkylation of isobutane with 2-butene was investigated. Since under liquid phase conditions the alkylation reaction is severely diffusion limited, effects of diffusion on the rate of reaction and deactivation pathways were considered. In the present work, an attempt has been made to implement more appropriate assumptions in order to properly model catalyst deactivation in a mixed reactor. Accordingly, spatial variation of diffusivity in the pores of the catalyst was considered as a function of time on stream. The effect of the pore mouth plugging was also investigated and it was found that this phenomenon had a pronounced effect on the... 

    Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane

    , Article Chinese Journal of Chemical Engineering ; Volume 24, Issue 5 , 2016 , Pages 612-622 ; 10049541 (ISSN) Darvishi, A ; Davand, R ; Khorasheh, F ; Fattahi, M ; Sharif University of Technology
    Chemical Industry Press 
    Abstract
    An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular reactors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of small diameter tubes immersed in a shell through a proper coolant flows. Herein, a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence olefin over V2O5/γ-Al2O3 catalyst was presented. Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions, gas process and coolant temperatures, as well as other parameters affecting the reactor performance such... 

    Comparison of conventional and spherical reactor for the industrial auto-thermal reforming of methane to maximize synthesis gas and minimize CO2

    , Article International Journal of Hydrogen Energy ; Volume 42, Issue 31 , 2017 , Pages 19798-19809 ; 03603199 (ISSN) Shahhosseini, H. R ; Saeidi, S ; Najari, S ; Gallucci, F ; Sharif University of Technology
    Abstract
    Auto-thermal reforming (ATR), a combination of exothermic partial oxidation and endothermic steam reforming of methane, is an important process to produce syngas for petrochemical industries. In a commercial ATR unit, tubular fixed bed reactors are typically used. Pressure drop across the tube, high manufacturing costs, and low production capacity are some disadvantages of these reactors. The main propose of this study is to offer an optimized radial flow, spherical packed bed reactor as a promising alternative for overcoming the drawbacks of conventional tubular reactors. In the current research, a one dimensional pseudo-homogeneous model based on mass, energy, and momentum balances is... 

    Solid-liquid catalytic reactions in a new two-impinging-jets reactor: Experiment and modeling

    , Article Industrial and Engineering Chemistry Research ; Volume 48, Issue 6 , 2009 , Pages 2861-2869 ; 08885885 (ISSN) Dehkordi, A. M ; Safari, I ; Ebrahimi, A. A ; Sharif University of Technology
    2009
    Abstract
    Novel type of two-impinging-jets loop reactor (TIJLR) has been proposed and tested successfully for the solid-liquid catalytic reactions. The TIJLR was tested using the catalytic reaction of isomerization of D-glucose to D-fructose by immobilized glucose isomerase catalyst as a typical model system of solid-liquid catalytic reactions. The TIJLR is characterized by a high intensity reaction chamber, which is separated by a perforated plate from other parts of the reactor. The perforated plate was used as a filter to keep the catalyst particles within the reaction chamber. A compartment model with two adjustable parameters was considered to describe the pattern of flow within the reaction... 

    Simulation of activity loss of fixed bed catalytic reactor of MTO conversion using percolation theory

    , Article Chemical Engineering Science ; Volume 66, Issue 23 , December , 2011 , Pages 6199-6208 ; 00092509 (ISSN) Izadbakhsh, A ; Khorasheh, F ; Sharif University of Technology
    2011
    Abstract
    In this investigation, a reactor model for prediction of the deactivation behavior of MTO's porous catalyst in a fixed bed reactor is developed. Effect of coking on molecular transport in the porous structure of SAPO-34 has been simulated using the percolation theory. Thermal effects of the reaction were considered in the model and the temperature profile of the gas stream in the reactor was predicted. The predicted loss in catalyst activity with time-on-stream was in very good agreement with the experimental data. The resulting coke deposition and gas temperature profiles along the length of reactor suggested a reaction front moving toward the outlet of the fixed bed reactor at the... 

    Optimization of reaction rate parameters in modeling of heavy paraffins dehydrogenation

    , Article World Academy of Science, Engineering and Technology ; Volume 79 , 2011 , Pages 389-393 ; 2010376X (ISSN) Vafajoo, L ; Khorasheh, F ; Nakhjavani, M. H ; Fattahi, M ; Sharif University of Technology
    2011
    Abstract
    In the present study, a procedure was developed to determine the optimum reaction rate constants in generalized Arrhenius form and optimized through the Nelder-Mead method. For this purpose, a comprehensive mathematical model of a fixed bed reactor for dehydrogenation of heavy paraffins over Pt-Sn/Al 2O 3 catalyst was developed. Utilizing appropriate kinetic rate expressions for the main dehydrogenation reaction as well as side reactions and catalyst deactivation, a detailed model for the radial flow reactor was obtained. The reactor model composed of a set of partial differential equations (PDE), ordinary differential equations (ODE) as well as algebraic equations all of which were solved... 

    Optimum operating conditions for direct oxidation of h 2s in a fluidized bed reactor

    , Article World Academy of Science, Engineering and Technology ; Volume 79 , 2011 , Pages 237-241 ; 2010376X (ISSN) Golestani, F ; Kazemeini, M ; Fattahi, M ; Amjadian, A ; Sharif University of Technology
    2011
    Abstract
    In this research a mathematical model for direct oxidization of hydrogen sulfide into elemental sulfur in a fluidized bed reactor with external circulation was developed. As the catalyst is deactivated in the fluidized bed, it might be placed in a reduction tank in order to remove sulfur through heating above its dew point. The reactor model demonstrated via MATLAB software. It was shown that variations of H 2S conversion as well as; products formed were reasonable in comparison with corresponding results of a fixed bed reactor. Through analyzing results of this model, it became possible to propose the main optimized operating conditions for the process considered. These conditions included;... 

    Multi-objective optimization of industrial membrane SMR to produce syngas for Fischer-Tropsch production using NSGA-II and decision makings

    , Article Journal of Natural Gas Science and Engineering ; Volume 32 , 2016 , Pages 222-238 ; 18755100 (ISSN) Shahhosseini, H. R ; Farsi, M ; Eini, S ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Membrane reactors are an advanced technology with vast application capacities for equilibrium limited endothermic reactions. The main propose of this study is to offer an optimized packed-bed membrane steam methane reforming (SMR) tubular reactor for sustainable CH4 conversion by implementing triple-objective optimization model based on optimum H2/CO ratio for low temperature Fischer-Tropsch (F-T) process. In this study a one dimensional pseudo-homogeneous model based on mass, energy, and momentum conservation laws is used to simulate the behavior of a packed-bed membrane reactor for production of syngas by SMR. In the optimization section, the proposed work explores optimal values of...