Loading...
Search for: recovery-mechanisms
0.009 seconds

    Simulation study of Conventional Fire Flooding (CFF) in fractured combustion cells: A promising tool along experiment

    , Article 1st International Petroleum Conference and Exhibition, Shiraz, 4 May 2009 through 6 May 2009 ; 2009 Fatemi, S. M ; Kharrat, R ; Ghotbi, C ; Sharif University of Technology
    European association of geoscientists and engineers, EAGE  2009
    Abstract
    The Conventional Fire Flooding (CFF) process application feasibility on fractured carbonated reservoirs remained questionable. In this paper first combustion parameters and reaction kinetics of a naturally fractured low permeability carbonated heavy oil reservoir in Iran called Kuh-E-Mond applied to simulation study. After that, simulator has been validated with Kuh-E-Mond combustion tube experiment. Recovery mechanism in single block matrix is different from one in conventional model since oxygen first flows into the fractures and then diffuses from all sides into the matrix. Combustion of the oil in the fractures produces some water ahead of fracture combustion front which prohibits oxygen... 

    Study on non-equilibrium effects during spontaneous imbibition

    , Article Energy and Fuels ; Vol. 25, issue. 7 , June , 2011 , p. 3053-3059 ; ISSN: 08870624 Mirzaei-Paiaman, A ; Masihi, M ; Standnes, D. C ; Sharif University of Technology
    Abstract
    Spontaneous imbibition of water into the matrix blocks because of capillary forces is an important recovery mechanism for oil recovery from naturally fractured reservoirs. In modeling this process, it has been assumed classically that local equilibrium is reached and, therefore, capillary pressure and relative permeability functions are only a function of water saturation, resulting in the appearance of the self-similarity condition. In some works published in the last 2 decades, it has, however, been claimed that local equilibrium is not reached in porous media, and therefore, opposite the classical local-equilibrium/self-similar approach, non-equilibrium effects should be taken into... 

    The effect of fractures' geometrical properties on the recovery mechanism of the top-down in situ combustion process

    , Article Petroleum Science and Technology ; Volume 30, Issue 2 , Feb , 2011 , Pages 147-158 ; 10916466 (ISSN) Fatemi, S. M ; Kharrat, R ; Sharif University of Technology
    2011
    Abstract
    The top-down in situ combustion (ISC) involves the stable propagation of the combustion front from the top vertical injector to the bottom horizontal producer. Apart from laboratory studies in conventional sandstones, no application of the process in fractured carbonates has been addressed yet. The authors modified a successful combustion tube history matched model of an Iranian low-permeable heavy oil reservoir called Kuh-E-Mond to investigate the feasibility of ISC in fractured carbonate reservoirs mimicking block-scale combustion cells. Effects of fractured geometrical properties such as orientation, location, extension, density, spacing, and dispersion were considered. Results confirmed... 

    Study on non-equilibrium effects during spontaneous imbibition

    , Article Energy and Fuels ; Volume 25, Issue 7 , June , 2011 , Pages 3053-3059 ; 08870624 (ISSN) Mirzaei Paiaman, A ; Masihi, M ; Standnes, D. C ; Sharif University of Technology
    2011
    Abstract
    Spontaneous imbibition of water into the matrix blocks because of capillary forces is an important recovery mechanism for oil recovery from naturally fractured reservoirs. In modeling this process, it has been assumed classically that local equilibrium is reached and, therefore, capillary pressure and relative permeability functions are only a function of water saturation, resulting in the appearance of the self-similarity condition. In some works published in the last 2 decades, it has, however, been claimed that local equilibrium is not reached in porous media, and therefore, opposite the classical local-equilibrium/self-similar approach, non-equilibrium effects should be taken into... 

    The applicability of expanding solvent steam-assisted gravity drainage (ES-SAGD) in fractured systems

    , Article Petroleum Science and Technology ; Volume 28, Issue 18 , Oct , 2010 , Pages 1906-1918 ; 10916466 (ISSN) Fatemi, S. M ; Sharif University of Technology
    2010
    Abstract
    The aim of this contribution is to evaluate the performance of an expanding solvent steam assisted gravity drainage (ES-SAGD) process in naturally fractured systems. Steam-assisted gravity drainage (SAGD) and ES-SAGD processes have been investigated in both conventional and fractured reservoir models and the effect of networked fractures on the recovery mechanism and performance of ES-SAGD has been investigated. Operational parameters such as steam quality, vertical distances between wells, and steam injection temperature have been also evaluated. Finally, to study the effect of a well's horizontal offset, a staggered ES-SAGD well configuration has been compared to a stacked ES-SAGD  

    Schedule swapping: A technique for temperature management of distributed embedded systems

    , Article Proceedings - IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, EUC 2010, 11 December 2010 through 13 December 2010, Hong Kong ; 2010 , Pages 1-6 ; 9780769543222 (ISBN) Samie Ghahfarokhi, F ; Ejlali, A ; Sharif University of Technology
    2010
    Abstract
    A distributed embedded system consists of different processing elements (PEs) communicating via communication links. PEs have various power characteristics and in turn, have different thermal profiles. With new technologies, processor power density is dramatically increased which results in high temperature. This alarming trend underscores the importance of temperature management methods in system design. The majority of proposed techniques to address thermal issues, impose severe penalties on performance and reliability. We present Schedule Swapping, a technique for reducing peak temperature in distributed embedded systems while satisfying real-time constraints. Contrary to many other... 

    Study on static strain aging of 6082 aluminium alloy

    , Article Materials Science and Technology ; Volume 26, Issue 2 , Jul , 2010 , Pages 169-175 ; 02670836 (ISSN) Dadbakhsh, S ; Karimi Taheri, A ; Sharif University of Technology
    2010
    Abstract
    In this study both the quench aging and static strain aging kinetics of a 6082 Al alloy were investigated at a temperature range of 130-200°C using the Vickers hardness and tensile test. The activation energy and dislocation density were determined at different stages of the aging phenomenon. The former was used to analyse the kinetics of aging and the latter to interpret the competition of strengthening and recovery mechanisms during aging. It is shown that different activation energies are achieved depending on the aging time and temperature relating to formation of appropriate precipitates at different stages of aging. Moreover, it is revealed that prestrain reduces the activation energy.... 

    Predicting the rock wettability changes using solutions with different pH, through streaming potential measurement

    , Article Journal of Petroleum Science and Engineering ; Volume 167 , 2018 , Pages 20-27 ; 09204105 (ISSN) Rahbar, M ; Pahlavanzadeh, H ; Ayatollahi, S ; Manteghian, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The high reactivity of the carbonate rocks at various pH makes it difficult to evaluate the wettability, hence to find the recovery mechanisms behind modified waterflood in carbonate reservoirs. More recently, the streaming potential measurement is introduced as a method of electrokinetic phenomena more relevant to the subsurface systems. Regarding few experimental studies and in order to improve our understanding on streaming potential measurement, the electrokinetic studies on quartz and calcite surface were conducted as a function of pH in the range of 1.5–11.5 using an in-house novel setup of streaming potential measurement. High sensitivity of streaming potential coupling coefficient to... 

    Laboratory evaluation of nitrogen injection for enhanced oil recovery: Effects of pressure and induced fractures

    , Article Fuel ; Volume 253 , 2019 , Pages 607-614 ; 00162361 (ISSN) Fahandezhsaadi, M ; Amooie, M. A ; Hemmati Sarapardeh, A ; Ayatollahi, S ; Schaffie, M ; Ranjbar, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Nitrogen has emerged as a suitable alternative to carbon dioxide for injection into hydrocarbon reservoirs worldwide to enhance the recovery of subsurface energy. Nitrogen typically costs less than CO2 and natural gas, and has the added benefit of being widely available and non-corrosive. However, the underlying mechanisms of recovery following N2 injection into fractured reservoirs that make up a large portion of the world's oil and gas reserves are not well understood. Here we present the laboratory results of N2 injection into carbonate rocks acquired from a newly developed oil reservoir in Iran with a huge N2-containing natural gas reservoir nearby. We investigate the effectiveness of N2... 

    Experimental study of dynamic imbibition during water flooding of naturally fractured reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 174 , 2019 , Pages 1-13 ; 09204105 (ISSN) Harimi, B ; Masihi, M ; Mirzaei Paiaman, A ; Hamidpour, E ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Capillary imbibition is an important recovery mechanism in naturally fractured reservoirs when water-filled fractures surround water-wet matrix blocks. A large amount of studies of imbibition process is simply total or partial immersion of nonwetting phase saturated rock in aqueous wetting phase. However, water advance in fractures during water flooding or water encroachment from an active aquifer introduces time dependent boundary conditions where invariant exposure of rock surface to water is not representative. In this work, a laboratory simulated matrix-fracture system was used to investigate different aspects of imbibition in the presence of fracture fluid flow (namely dynamic... 

    Activating solution gas drive as an extra oil production mechanism after carbonated water injection

    , Article Chinese Journal of Chemical Engineering ; Volume 28, Issue 11 , 2020 , Pages 2938-2945 Shakiba, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Materials China  2020
    Abstract
    Enhanced oil recovery (EOR) methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases. Over the last decade, carbonated water injection (CWI) has been considered as one of the multi-objective EOR techniques to store CO2 in the hydrocarbon bearing formations as well as improving oil recovery efficiency. During CWI process, as the reservoir pressure declines, the dissolved CO2 in the oil phase evolves and gas nucleation phenomenon would occur. As a result, it can lead to oil saturation restoration and subsequently, oil displacement due to the hysteresis effect. At this condition, CO2 would act as in-situ dissolved gas into the oil... 

    Comparing the performance and recovery mechanisms for steam flooding in heavy and light oil reservoirs

    , Article Society of Petroleum Engineers- SPE Heavy Oil Conference ; Volume 1 , 2012 , Pages 28-36 ; 9781622761111 (ISBN) Bagheripour Haghighi, M ; Ayatollahi, S ; Shabaninejad, M ; Sharif University of Technology
    SPE  2012
    Abstract
    The concern over fossil energy shortage for the next decade leads to the extensive research activities in the area of enhanced oil recovery. Steam injection as one of well known EOR process has been used for about five decades to improve the oil production rate and recovery efficiency. Steam flooding is applied to heavy and extra-heavy oil reservoirs; however it could be used in light oil reservoirs in which water injection do not work effectively. Regardless of different performances, this method is an efficient EOR process for both heavy and light oil reservoirs. In this work, two separate numerical models were prepared to investigate steam flooding performance for the recovery of light... 

    Macroscopic recovery mechanisms of in-situ combustion process in heavy oil fractured systems: Effect of fractures geometrical properties and operational parameters

    , Article Society of Petroleum Engineers - SPE EOR Conference at Oil and Gas West Asia 2012, OGWA - EOR: Building Towards Sustainable Growth ; Volume 2 , 2012 , Pages 593-617 ; 9781622760473 (ISBN) Fatemi, S. M ; Kharrat, R ; Vossoughi, S ; Ghotbi, C ; Sharif University of Technology
    SPE  2012
    Abstract
    The In-Situ Combustion (ISC) as a thermal EOR process has been studied deeply in heavy oil reservoirs and is a promising method for certain non-fractured sandstones. However, its feasibility in fractured carbonates remained questionable. The aim of the present work was to understand the recovery mechanisms of ISC in fractured models and to evaluate the effect of fractures geometrical properties such as orientation, density, location and networking on the ISC recovery performance. Combustion parameters of a fractured low permeable carbonate heavy oil reservoir in Middle East called KEM; applied to simulation study. Simulator has been validated with KEM combustion tube experimental data and... 

    Investigating the fracture network effects on sweep efficiency during wag injection process

    , Article Transport in Porous Media ; Volume 93, Issue 3 , July , 2012 , Pages 577-595 ; 01693913 (ISSN) Dehghan, A. A ; Ghorbanizadeh, S ; Ayatollahi, S ; Sharif University of Technology
    2012
    Abstract
    In this study, the main recovery mechanisms behind oil/water/gas interactions during the water-alternating-gas (WAG) injection process, in a network of matrix/fracture, were fundamentally investigated. A visual micromodel was utilized to provide insights into the potential applications of WAG process in fractured oil-wet media as well as the possibility of observing microscopic displacement behavior of fluids in the model. The model was made of an oil-wet facture/matrix network system, comprised of four matrix blocks surrounded with fractures. Different WAG injection scenarios, such as slug arrangements and the effects of fluid injection rates on oil recovery were studied. A new equation... 

    Experimental investigation of tertiary oil gravity drainage in fractured porous media

    , Article Special Topics and Reviews in Porous Media ; Volume 1, Issue 2 , 2010 , Pages 179-191 ; 21514798 (ISSN) Rezaveisi, M ; Rostami, B ; Kharrat, R ; Ayatollahi, Sh ; Ghotbi, C ; Sharif University of Technology
    2010
    Abstract
    The amount of residual oil trapped in the matrix of a fractured reservoir after water drive, either natural water drive or water injection, depends on the wettability of the matrix rocks. Gas oil gravity drainage (GOGD) has been proposed as the tertiary oil recovery process for this type of oil reservoir. The current work focuses on experimental investigation of tertiary GOGD in fractured porous media under different types of matrix wettability. Results of a set of experiments performed in artificial porous media composed of sand packs and glass beads of different wettability have been used to check the GOGD rate and the ultimate oil recovery for previously waterflooded models. A novel...