Loading...
Search for: reduced-order-model
0.006 seconds
Total 47 records

    Investigation of Vibration and Stability of Graphene NanoRibbone under Magnetic field Effect

    , Ph.D. Dissertation Sharif University of Technology Mohammadkhani, Hasan (Author) ; Dehghani Firouzabadi, Rouhollah (Supervisor)
    Abstract
    This study aims at investigating the vibration analysis and stability of Graphene Nano-Ribbon (GNR) under a magnetic field using continuum mechanics approach and an efficient hybrid modal-molecular dynamics method. The force distribution on the GNR due to the magnetic field is determined by Maxwell's equations, Biot-savart law, magnetic dipoles and Lorentz force law.
    Using the continuum mechanics model, the vibration of the GNR in a magnetic field is investigated by some problems and the resonance frequencies, stability boundaries and critical load are studied.
    Furthermore, in this present study, an efficient hybrid modal-molecular dynamics method is developed for the vibration... 

    Dynamics and stability of conical/cylindrical shells conveying subsonic compressible fluid flows with general boundary conditions

    , Article International Journal of Mechanical Sciences ; Volume 120 , 2017 , Pages 42-61 ; 00207403 (ISSN) Rahmanian, M ; Firouz Abadi, R. D ; Cigeroglu, E ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A fast and efficient reduced order formulation is presented for the first time to study dynamics and stability of conical/cylindrical shells with internal fluid flows. The structural and fluid formulations are developed based on general assumptions to avoid any deficiency due to modeling. Their respective solutions and the final solution to the coupled field problem are also developed in a way to be capable of capturing any desirable set of boundary conditions. In addition to the flexibility provided by the solution methodology and generalization provided by the formulation, current solution proposes an additional advantage over others which is the minimal computational cost due to the... 

    An efficient reduced-order modelling approach based on fluid eigenmodes and boundary element method

    , Article Journal of Fluids and Structures ; Volume 23, Issue 1 , 2007 , Pages 143-153 ; 08899746 (ISSN) Shahverdi, H ; Nobari, A. S ; Behbahani Nejad, M ; Haddadpour, H ; Sharif University of Technology
    2007
    Abstract
    This paper presents an efficient reduced-order modelling approach based on the boundary element method. In this approach, the eigenvalue problem of the unsteady flows is defined based on the unknown wake singularities. By constructing this reduced-order model, the body quasi-static eigenmodes are removed from the eigensystem and it is possible to obtain satisfactory results without using the static correction technique when enough eigenmodes are used. In addition to the conventional method, eigenanalysis and reduced-order modelling of unsteady flows over a NACA 0012 airfoil, a wing with NACA 0012 section and a wing-body combination are performed using the proposed reduced order modelling... 

    Reduced-order modeling of unsteady flows without static correction requirement

    , Article Journal of Aircraft ; Volume 42, Issue 4 , 2005 , Pages 882-886 ; 00218669 (ISSN) Behbahani Nejad, M ; Haddadpour, H ; Esfahanian, V ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2005
    Abstract
    A new reduced-order modeling approach is presented. This approach is based on fluid eigenmodes and without using the static correction. The vortex lattice method is used to analyze unsteady flows over two-dimensional airfoils and three-dimensional wings. Eigenanalysis and reduced-order modeling are performed using a conventional method with and without the static correction technique. In addition to the conventional method, eigenanalysis and reduced-order modeling are also performed using the new proposed method, that is, without static correction requirement. Numerical examples are presented to demonstrate the accuracy and computational efficiency of the proposed method. Based on the... 

    Reduced order modeling of liquid sloshing in 3D tanks using boundary element method

    , Article Engineering Analysis with Boundary Elements ; Volume 33, Issue 6 , 2009 , Pages 750-761 ; 09557997 (ISSN) Dehghani Firouzabadi, R ; Haddadpour, H ; Ghasemi, M ; Sharif University of Technology
    2009
    Abstract
    This paper presents the application of reduced order modeling technique for investigation of liquid sloshing in three-dimensional tanks. The governing equations of sloshing are written using a boundary element formulation for incompressible potential flow. Then, the governing equations are reduced to a more efficient form that is represented only in terms of the velocity potential on the liquid free surface. This particular form is employed for eigen-analysis of fluid motion and the sloshing frequencies and mode shapes are determined. Then, the sloshing frequencies and the corresponding right- and left-eigenvectors are used along the modal analysis technique to find a reduced order model... 

    Dynamics Modeling of new Scratch-drive Actuators with Bounce back Mechanism (BSDA)

    , M.Sc. Thesis Sharif University of Technology Attarzadeh, Mohammad Ali (Author) ; Vossughi, Gholamreza (Supervisor) ; Meghdari, Ali (Supervisor)
    Abstract
    In recent decades, micro-electromechanical systems – MEMS – havefound extensive applications in applied science and engineering. One of the most popular MEMS actuatorsis micro Scratch Drive Actuator (SDA), which can be used in various applications, for instance: precision positioning, micro-chip displacement and rotating micromotors. Their outstanding capabilities such as: high controllability, precise step displacement, vast transportation domain and large force relative to their small size, have made them popular among researchers. Recently, a new generation of SDA is introduced, known as Bounce-back Scratch Drive Actuator or BSDA, which is fundamentally different in motion generation from... 

    Optimization of Airfoil Design Using Low-dimensional POD Method

    , M.Sc. Thesis Sharif University of Technology Marvi, Morteza (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    The aim of this research was investigation, development and application of lowdimensional proper orthogonal decomposition method for simulation of flow field and airfoil design. Sine analytical methods have low accuracy and limitations and also experimental methods have other problems, researchers usually use computational approach, which mostly do not have acceptable efficiency and speeds of computational. The idea of application of reduced order modeling which originally comes from control theories and structural analysis, have attracted many researcher in recent years. In this research, we also used POD and flow data to obtain a fast module of aerodynamic airfoil design. The goals of... 

    Acoustoelastic Simulation of Baffled Container Using Boundary Element Method

    , M.Sc. Thesis Sharif University of Technology Bornassi, Saeed (Author) ; Haddadpour, Hassan (Supervisor) ; Dehghani Firoozabadi, Rouhollah (Co-Advisor)
    Abstract
    In this project, the acoustoelastic simulation of baffled cavities using boundary element method is investigated. At first step, the acoustic field for an enclosed rigid cavity with baffle is formulated and then solved by dual reciprocity boundary element method. In order to derive the governing equation, the acoustic domain is considered without mean flow and the fluid is assumed to be compressible and inviscid. Using the developed model and applying the zoning method, behavior and response of baffled cavities are investigated. In order to study the structure_acoustic interaction, modal reduced order model is used to explain the vibration of structure in combination to acoustic field. The... 

    A Reduced Order Hydroelastic Analysis of 3D Hydrofoil Considering Partial Sheet Cavitation Effects

    , Ph.D. Dissertation Sharif University of Technology Alavi, Mahdi (Author) ; Haddadpour, Hassan (Supervisor) ; Dehghani Firouz-abad, Roohallah (Co-Supervisor)
    Abstract
    In this Thesis hydroelastic analysis of 3D hydrofoil is investigated while partial sheet cavitation effects are considered. To this aim, first steady cavity boundary must be recognized.This region is calculated by means of conventional iterative procedure, stood upon potential flow theorem. In the second step, the reduced order fluid dynamics equations are derived based on potential flow theorem along with finite element method. This procedure is done in a way that real time system of equations are derived and iterative algorithm of conventional methods is omitted. To this aim, it is assumed that amplitude and frequency of the body oscillations are altered so that the cavity length in... 

    Developing a Reduced-order Model of Hysteretic Shear Building by a Modal Transformation Method based on Mathematical Expansions

    , M.Sc. Thesis Sharif University of Technology Barati, Mohammad Bagher (Author) ; Rahimzadeh Rofouei, Fayyaz (Supervisor)
    Abstract
    With the advent of virtual memory machines and parallel processing, there has been a considerable shift toward computer-aided design and nonlinear analysis of structures. But increasing the size of computer memory or increasing the number of processing units are not the only ways to achieve a satisfactory solution to a large, complex problem. Another useful method is to reduce the size of the problem so that the reduced model is small enough to be solved at an appropriate processing level, and yet the important engineering behavior of the model is preserved in the reduced problem.Reduced models as an alternative, have gained considerable attention throughout the years in order to meet the... 

    Developing and Using Reduced Order Models for Combined Internal and External Fluid-Structure Interaction Problems

    , Ph.D. Dissertation Sharif University of Technology Dehghani Firouzabadi, Roohollah (Author) ; Haddadpour, Hassan (Supervisor)
    Abstract
    This thesis deals with developing and applying reduced order modeling techniques for fluid and structure interaction problems. First, the basis and formulations of reduced order modeling technique in the function space are reviewed. Then the governing equations of structural dynamics as well as incompressible flow are reviewed and some simplifications are applied. Based on the modal analysis technique along with the finite element model of the structure and the boundary element model for flow field, some reduced order models are represented. The represented models are developed for liquid sloshing in moving and elastic tanks, fluid structure interaction in flexible shells conveying flow,... 

    A hybrid controller for purity control of a pressure swing adsorption process

    , Article 56th IEEE Annual Conference on Decision and Control, CDC 2017, 12 December 2017 through 15 December 2017 ; Volume 2018 , January , 2018 , Pages 2372-2377 ; 9781509028733 (ISBN) Fakhroleslam, M ; Fatemi, S ; Bozorgmehry Boozarjomehry, R ; De Santis, E ; Di Benedetto, M. D ; Pola, G ; ANCA Motion; City of Melbourne; Mathworks; The University of Melbourne; The University of Newcastle; United Technologies Research Center (UTRC) ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    A hybrid controller is proposed for Pressure Swing Adsorption (PSA) processes. Since the process is described by a set of Partial Differential Algebraic Equations (PDAE's), first a Local Reduced Order Model (LROM) for the process is developed and then it is formalized as a hybrid system. A controller is designed for purity control of the process in the presence of external disturbances, by determining the maximal safe set of the LROM. Hybrid backward reachability analysis is performed for this purpose. The controller is designed and applied to a two-bed, six-step PSA process whose dynamical behavior is simulated by a full-order principle-based model of the process. Excellent performance of... 

    Application of the modified reduced-order aerodynamics modelling approach to aeroelastic analysis

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 223, Issue 3 , 2009 , Pages 257-270 ; 09544100 (ISSN) Shahverdi, H ; Salehzadeh Nobari, A ; Haddadpour, H ; Behbahani Nejad, M ; Sharif University of Technology
    2009
    Abstract
    This study presents the application of the Proposed Modified Reduced-Order Aerodynamics Modelling approach for aeroelastic analysis based on the boundary element method (BEM) as a novel approach. The used BEM has the capability to capture the thickness effect and geometric complexity of a general three-dimensional model. In this approach the reduced-order aerodynamic model is defined through the eigenvalue problem of unsteady flow based on the unknown wake singularities. Based on the used aerodynamic model an explicit algebraic form of the aeroelastic equations is derived that reduces computational efforts and complexity. This special feature enables us to determine the aeroelastic... 

    Fast and accurate multiscale reduced-order model for prediction of multibreath washout curves of human respiratory system

    , Article Industrial and Engineering Chemistry Research ; Volume 60, Issue 10 , 2021 , Pages 4131-4141 ; 08885885 (ISSN) Abbasi, Z ; Boozarjomehry, R. B ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The curve of exhaled inert gas concentration against exhaled volume is called gas washout curve. The slope at the end part of gas washout curve (Sn) is a measure of structural abnormalities. Sn depends on the spatial concentration distribution and dynamic of gas washout, which depends on several mechanisms including asymmetry of airways, nonhomogeneous ventilation, sequential emptying, and gas exchange with blood. Due to a large number of airways in human lungs, using simplified models is inevitable. On the other hand, these simplified models cannot capture some of the mentioned mechanisms and subsequently were not able to predict experimental trend of change in Sn with breath number in... 

    Model reduction techniques for unstable second order-form systems

    , Article IEEJ Transactions on Electrical and Electronic Engineering ; Volume 16, Issue 3 , 2021 , Pages 445-454 ; 19314973 (ISSN) Ali, S ; Mohd-Mokhtar, R ; Haider, S ; Bukhari, S. H. R ; Rasool, A ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    In the present work, multiple non existing model order reduction (MOR) techniques for unstable second-order form systems (SOSs) are proposed. For unstable SOSs, continuous-time algebraic Lyapunov equations get unsolvable that halt the reduction process. To avoid this problem, unstable SOS is first decomposed into stable and unstable portions and balanced truncation is applied to the stable part. The obtained reduced order model (ROM) for the stable portion is augmented with the unstable portion to obtain the overall reduced system. It is observed that the second-order structure in ROM for the first technique gets lost as well as augmented unstable dynamics degrade the ROM performance. To... 

    Fast and accurate multiscale reduced-order model for prediction of multibreath washout curves of human respiratory system

    , Article Industrial and Engineering Chemistry Research ; Volume 60, Issue 10 , 2021 , Pages 4131-4141 ; 08885885 (ISSN) Abbasi, Z ; Boozarjomehry, R. B ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The curve of exhaled inert gas concentration against exhaled volume is called gas washout curve. The slope at the end part of gas washout curve (Sn) is a measure of structural abnormalities. Sn depends on the spatial concentration distribution and dynamic of gas washout, which depends on several mechanisms including asymmetry of airways, nonhomogeneous ventilation, sequential emptying, and gas exchange with blood. Due to a large number of airways in human lungs, using simplified models is inevitable. On the other hand, these simplified models cannot capture some of the mentioned mechanisms and subsequently were not able to predict experimental trend of change in Sn with breath number in... 

    Model reduction techniques for unstable second order-form systems

    , Article IEEJ Transactions on Electrical and Electronic Engineering ; Volume 16, Issue 3 , 2021 , Pages 445-454 ; 19314973 (ISSN) Ali, S ; Mohd Mokhtar, R ; Haider, S ; Bukhari, S. H. R ; Rasool, A ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    In the present work, multiple non existing model order reduction (MOR) techniques for unstable second-order form systems (SOSs) are proposed. For unstable SOSs, continuous-time algebraic Lyapunov equations get unsolvable that halt the reduction process. To avoid this problem, unstable SOS is first decomposed into stable and unstable portions and balanced truncation is applied to the stable part. The obtained reduced order model (ROM) for the stable portion is augmented with the unstable portion to obtain the overall reduced system. It is observed that the second-order structure in ROM for the first technique gets lost as well as augmented unstable dynamics degrade the ROM performance. To... 

    Free vibrations of moderately thick truncated conical shells filled with quiescent fluid

    , Article Journal of Fluids and Structures ; Volume 63 , 2016 , Pages 280-301 ; 08899746 (ISSN) Rahmanian, M ; Dehghani Firouz Abadi, R ; Cigeroglu, E ; Sharif University of Technology
    Academic Press  2016
    Abstract
    A novel reduced order formulation is proposed for the vibration analysis of conical shells containing stationary fluid. Hamiltonian approach is followed to obtain the governing equations of motion for the structure. Utilizing the Navier-Stokes equations and simplifying for irrotational, compressible and inviscid assumptions, the final fluid equation is obtained. A general solution based on the Galerkin method is proposed for the conical shell in vacuum. Several boundary conditions are investigated to show the capability of the proposed solution. A novel reduced order formulation based on the finite element method is developed for solution of the fluid equation. Static condensation technique... 

    A novel lifetime prediction method for lithium-ion batteries in the case of stand-alone renewable energy systems

    , Article International Journal of Electrical Power and Energy Systems ; Volume 103 , 2018 , Pages 115-126 ; 01420615 (ISSN) Astaneh, M ; Dufo López, R ; Roshandel, R ; Bernal Agustin, J. L ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper presents a mathematical formulation of lithium-ion batteries, including aging and temperature effects. The model is developed by integrating the simplified single particle model (SSPM) and reduced-order model (ROM) to predict solid electrolyte interphase growth (SEI). Results show agreement with the experimental data at 25 °C operating temperature and moderate cycling currents. A maximum error of 3.6% in finding the battery discharged Ah is observed in harsh operating conditions, including 60 °C and approaching the end of life of the battery. Due to the typical operating conditions of stand-alone renewable energy systems, more accurate estimations are expected. Finally, this... 

    A reduced-order hydroelastic analysis of 2D hydrofoil considering supercavitation effects

    , Article Ships and Offshore Structures ; Volume 13, Issue 6 , 2018 , Pages 584-593 ; 17445302 (ISSN) Alavi, S. M ; Haddadpour, H ; Firouz Abadi, R. D ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    An efficient two-dimensional reduced-order hydroelastic model for studying supercavitation phenomenonwith zero cavitation number is proposed. In order to compute fluid eigenmodes, unsteady hydrodynamic model is derived using the finite-element method along with the potential flow assumption. This model takes advantage of a new real time, direct algorithm to compute the pressure distribution around the hydrofoil, which avoids any iterative scheme to find cavity extent as like as conventional method. The present approach starts by specifying the steady cavitation domain for the zero cavitation number, then, it is assumed that unsteady cavitation flow around the steady-state leads to small...