Loading...
Search for:
regenerative-medicine
0.005 seconds
The nano-based theranostics for respiratory complications of COVID-19
, Article Drug Development and Industrial Pharmacy ; 2021 ; 03639045 (ISSN) ; Hashemian, S. M. R ; Memarnejadian, A ; Akbarzadeh, I ; Hossein Khannazer, N ; Vosough, M ; Sharif University of Technology
Taylor and Francis Ltd
2021
Abstract
High morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made coronavirus disease 2019 (COVID-19) the leading challenge for health experts all over the world. Currently, there is no specific treatment for COVID-19; however, thanks to worldwide intense attempts, novel vaccines such as mRNA-1273 (Moderna TX, Inc.) and BNT162b2 (Biontech/Pfizer) were developed very fast and FDA approved them for emergency use. Nanomedicine-based drug delivery can be an advanced therapeutic strategy to deal with clinical complications of COVID-19. Given the fact that SARS-CoV-2 typically affects the respiratory tract, application of inhalable nanoparticles (NPs)...
Mechanical characteristics of SPG-178 hydrogels: Optimizing viscoelastic properties through microrheology and response surface methodology
, Article Iranian Biomedical Journal ; Volume 24, Issue 2 , 2020 , Pages 110-118 ; Mirzadeh, H ; Mohammadi, A ; Bagheri Khoulenjani, S ; Sharif University of Technology
Pasteur Institute of Iran
2020
Abstract
Background: SApeptides have growing applications in tissue engineering and regenerative medicine. The application of SApeptide-based hydrogels depends strongly on their viscoelastic properties. Optimizing the properties is of importance in tuning the characteristics of the hydrogels for a variety of applications. Methods: In this study, we employed statistical modeling, conducted with the RSM and particle tracking microrheology, to investigate the effects of self-assembling SPG-178 peptide and added NaCl salt concentrations and milieu type (DI water or blood serum) on the viscoelastic properties of SPG-178 hydrogels. A central composite RSM model was employed for finding the optimum value of...
Characterization of Tissue Structure of Natural Scaffolds Made of Rat Kidney
, M.Sc. Thesis Sharif University of Technology ; Asgari, Sirius (Supervisor) ; Kajbafzadeh, Abdolmohammad (Supervisor)
Abstract
Recently, the deficiency of methods like organ donation and medicine made tissue engineering a prospective method in regeneration of tissues. Despite all of its advantageous like any other method, it has its own weak points. Its major disadvantage is the probability of rejection by the host body. Using proper material and controlling synthesis reactions by researchers decreased the rejection of synthetic scaffolds. But in the case of natural scaffolds due to the range of properties, many tests should be applied on the scaffold prior to implantation in order to evaluate functionality in body. In this research, SDS and TritonX100 has been used to decellulize kidney. Then using uniaxial...
Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system
, Article Journal of Materials Chemistry B ; Volume 4, Issue 19 , 2016 , Pages 3169-3190 ; 20507518 (ISSN) ; Sharif University of Technology
Royal Society of Chemistry
2016
Abstract
Although graphene/stem cell-based tissue engineering has recently emerged and has promisingly and progressively been utilized for developing one of the most effective regenerative nanomedicines, it suffers from low differentiation efficiency, low hybridization after transplantation and lack of appropriate scaffolds required in implantations without any degrading in functionality of the cells. In fact, recent studies have demonstrated that the unique properties of graphene can successfully resolve all of these challenges. Among various stem cells, neural stem cells (NSCs) and their neural differentiation on graphene have attracted a lot of interest, because graphene-based neuronal tissue...
Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering
, Article Journal of Biotechnology ; Volume 212 , 2015 , Pages 71-89 ; 01681656 (ISSN) ; Mohammadaliha, N ; Mohseni, M ; Sharif University of Technology
Elsevier
2015
Abstract
This review aims to propose the integrative implementation of microfluidic devices, biomaterials, and computational methods that can lead to a significant progress in tissue engineering and regenerative medicine researches. Simultaneous implementation of multiple techniques can be very helpful in addressing biological processes. Providing controllable biochemical and biomechanical cues within artificial extracellular matrix similar to in vivo conditions is crucial in tissue engineering and regenerative medicine researches. Microfluidic devices provide precise spatial and temporal control over cell microenvironment. Moreover, generation of accurate and controllable spatial and temporal...
Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine
, Article Chemical Reviews ; Volume 111, Issue 2 , November , 2011 , Pages 253-280 ; 00092665 (ISSN) ; Hosseinkhani, H ; Hosseinkhani, M ; Boutry, S ; Simchi, A ; Shane Journeay, W ; Subramani, K ; Laurent, S ; Sharif University of Technology
2011
Abstract
Fetal stem cells, which can be isolated from the organs of fetuses, differentiate along multiple lineages. Their advantages over their adult counterparts include better intrinsic homing and engraftment and lower immunogenicity, and they are less ethically contentious. It is noteworthy that Mesenchymal Stem Cells (MSC) can be activated and mobilized at the site of damaged tissue. Since vascular delivery suffers from a pulmonary first pass effect, direct or systemic injection of MSCs into the damaged tissue is preferred, particularly in the case of versatile tissue ischemia. Ultrasound applies acoustic energy with a frequency above human hearing (20 kHz). Ultrasound imaging or sonography...
A microfluidic device for 2D to 3D and 3D to 3D cell navigation
, Article Journal of Micromechanics and Microengineering ; Volume 26, Issue 1 , November , 2015 ; 09601317 (ISSN) ; Amirifar, L ; Sharif University of Technology
Institute of Physics Publishing
2015
Abstract
Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be...
Hybrid silk fibroin–gelatin nanofibrous sheet for drug delivery and regenerative medicine: In-vitro characterization and controlled release of simvastatin/protein
, Article Polymers for Advanced Technologies ; 2020 ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
John Wiley and Sons Ltd
2020
Abstract
Blend drug-loading method in electrospun scaffolds has gained much attention as a cost-effective and simple delivery system in regenerative medicine. However, it has some drawbacks, such as the burst release of encapsulated drugs and denaturing active agents in harsh organic solvents. In this study, a new silk fibroin-gelatin (SF–G) fibrous sheet has been introduced as an engineered scaffold and a straightforward drug delivery system for skin tissue engineering applications. The hybrid sheets have been prepared via co-electrospinning and in-situ crosslinking methods without corrosive solvents and toxic crosslinking agents. To evaluate the proposed scaffold as a controlled release system, the...
Bioengineering approaches for corneal regenerative medicine
, Article Tissue Engineering and Regenerative Medicine ; Volume 17, Issue 5 , July , 2020 , Pages 567-593 ; Abdekhodaie, M. J ; Mashayekhan, S ; Baradaran Rafii, A ; Djalilian, A. R ; Sharif University of Technology
Korean Tissue Engineering and Regenerative Medicine Society
2020
Abstract
Background:: Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. Methods:: In this review, we first discussed the anatomy of the cornea and the required properties for...
Hybrid silk fibroin–gelatin nanofibrous sheet for drug delivery and regenerative medicine: In-vitro characterization and controlled release of simvastatin/protein
, Article Polymers for Advanced Technologies ; Volume 32, Issue 3 , 2021 , Pages 1333-1344 ; 10427147 (ISSN) ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
John Wiley and Sons Ltd
2021
Abstract
Blend drug-loading method in electrospun scaffolds has gained much attention as a cost-effective and simple delivery system in regenerative medicine. However, it has some drawbacks, such as the burst release of encapsulated drugs and denaturing active agents in harsh organic solvents. In this study, a new silk fibroin-gelatin (SF–G) fibrous sheet has been introduced as an engineered scaffold and a straightforward drug delivery system for skin tissue engineering applications. The hybrid sheets have been prepared via co-electrospinning and in-situ crosslinking methods without corrosive solvents and toxic crosslinking agents. To evaluate the proposed scaffold as a controlled release system, the...
Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering
, Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) ; Shamloo, A ; Bahadoran, M ; Moravvej, H ; Sharif University of Technology
Nature Research
2021
Abstract
Using the skin tissue engineering approach is a way to help the body to recover its lost skin in cases that the spontaneous healing process is either impossible or inadequate, such as severe wounds or burns. In the present study, chitosan/gelatin-based scaffolds containing 0.25, 0.5, 0.75, and 1% allantoin were created to improve the wounds’ healing process. EDC and NHS were used to cross-link the samples, which were further freeze-dried. Different in-vitro methods were utilized to characterize the specimens, including SEM imaging, PBS absorption and degradation tests, mechanical experiments, allantoin release profile assessment, antibacterial assay, and cell viability and adhesion tests....
A regenerative approach towards recovering the mechanical properties of degenerated intervertebral discs: Genipin and platelet-rich plasma therapies
, Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 231, Issue 2 , 2017 , Pages 127-137 ; 09544119 (ISSN) ; Wang, J. L ; Abdollahi, M ; Hsu, Y. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
SAGE Publications Ltd
2017
Abstract
Degenerative disc disease, associated with discrete structural changes in the peripheral annulus and vertebral endplate, is one of the most common pathological triggers of acute and chronic low back pain, significantly depreciating an individual's quality of life and instigating huge socioeconomic costs. Novel emerging therapeutic techniques are hence of great interest to both research and clinical communities alike. Exogenous crosslinking, such as Genipin, and platelet-rich plasma therapies have been recently demonstrated encouraging results for the repair and regeneration of degenerated discs, but there remains a knowledge gap regarding the quantitative degree of effectiveness and...