Loading...
Search for: regular-structure
0.006 seconds

    A sigma-delta analog to digital converter based on iterative algorithm

    , Article Eurasip Journal on Advances in Signal Processing ; Volume 2012, Issue 1 , 2012 ; 16876172 (ISSN) Kafashan, M ; Ghorbani, M ; Marvasti, F ; Sharif University of Technology
    2012
    Abstract
    In this article, we present a new iterative algorithm aimed at improving the performance of the sigma-delta analog to digital (A/D) converter. We subject the existing sigma-delta modulator, without changing the configuration, to an iterative procedure to increase the signal-to-noise ratio of the reconstructed signal. In other words, we demonstrate that sigma-delta modulated signals can be decoded using the iterative algorithm. Simulation results confirm that the proposed method works very well, even when less complex filters are used. The simple and regular structure of this new A/D converter, not only makes realization of the hardware as ASIC or on FPGA boards easy, but also allows it to... 

    High-throughput low-complexity unified multipliers over GF(2m) in dual and triangular bases

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume PP, Issue 99 , 2016 ; 15498328 (ISSN) Salarifard, R ; Bayat Sarmadi, S ; Farmani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    Multiplication is an essential operation in cryptographic computations. One of the important finite fields for such computations is the binary extension field. High-throughput low-complexity multiplication architectures lead to more efficient cryptosystems. In this paper, a high-throughput low-complexity unified multiplier for triangular and dual bases is presented, and is referred to as basic architecture. This multiplier enjoys slightly simpler and more regular structure due to use of the mentioned bases. Additionally, structurally improved architectures have been proposed, which have smaller time complexity than basic ones. This is achieved by the use of parallel processing method....