Loading...
Search for: reinforced-concrete-structures
0.012 seconds

    A model for the evolution of concrete deterioration due to reinforcement corrosion

    , Article Mathematical and Computer Modelling ; Volume 52, Issue 9-10 , November , 2010 , Pages 1403-1422 ; 08957177 (ISSN) Shodja, H. M ; Kiani, K ; Hashemian, A ; Sharif University of Technology
    2010
    Abstract
    One of the most crucial factors affecting the service life of reinforced concrete (RC) structures attacked by aggressive ions is reinforcement corrosion. As the steel corrosion progresses, crack propagation in concrete medium endangers the serviceability and the strength of RC structural members. In this study, a nonlinear mathematical model for determining the displacement and stress fields in RC structures subjected to reinforcement corrosion is introduced. For corrosion products, a nonlinear stress-strain relation which has been previously confirmed by experimental data is incorporated in the present analysis. In formulation of the governing equations for steel-rust-concrete composite,... 

    Influence of diaphragm opening on seismic response of rectangular RC buildings with end shear walls

    , Article Scientia Iranica ; Volume 23, Issue 4 , 2016 , Pages 1689-1698 ; 10263098 (ISSN) Khaloo, A. R ; Masoomi, H ; Nozhati, S ; Mohamadi Dehcheshmeh, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    Routinely, behavior of floor diaphragms is assumed completely rigid in their plane, which leads to erroneous results in analysis and design of some particular buildings. In this study, 4-story RC buildings, with end shear walls and plan aspect ratio of 3, are considered in order to investigate the influence of diaphragm openings on their seismic response. It is concluded that although in-plane floor flexibility has enormous effects on pre-yielding part of pushover curve, it has no influence on post-yielding part of that. Furthermore, the opening beside shear walls has crucial impact on response of building. Hence, it would be better off avoiding opening near the shear walls; if not, the... 

    Improvement in Reinforced Concrete Beam-Column Connections Behavior using Steel Plates

    , M.Sc. Thesis Sharif University of Technology Mousavi, Mir Mohammad Reza (Author) ; Khaloo, Ali Reza (Supervisor)
    Abstract
    Performance of reinforced concrete frames is highly dependent on detailing of the joint connections between its members, such as beams and columns. To have a good structural behavior, joints must show ductile behavior and designed based on the philosophy of strong column-weak beam. In the case of sever lacking ductility, strength or even rigidity of the connections, or having a weak column-strong beam, in the existing structures, there is a need for seismic upgrading of the connection. There are several ways for seismic upgrading of this type of connections.In this research, using steel plates for seismic upgrading of Concrete Beam-Column connections subjected to axial and cyclic loads has... 

    Investigating The Seismic Performance of R/C Buildings Equipped With Shape Memory Alloy Braces

    , M.Sc. Thesis Sharif University of Technology Sattari Nikkhoo, Mehrdad (Author) ; Rahimzadeh Rofooei, Fayyaz (Supervisor)
    Abstract
    Shape memory alloys (SMAs) are metallic materials that have unique properties, including shape memory effects, superelastic effects, and high damping characteristics. Recovery of large deformation and capability of energy dissipation during mechanical loading-unloading cycles are special properties of superelastic effect of shape memory alloys. Due to these distinctive macroscopic behaviors, not present in most traditional materials, SMAs are the basis for innovative applications like devices for protecting buildings from structural vibrations. This paper presents a numerical investigation aimed at evaluating the improvements achievable through devices for passive seismic protection of... 

    Investigation of the Effect of Chlorine ion Concentration on Corrosion of Steel Reinforcement in Concrete

    , M.Sc. Thesis Sharif University of Technology Hajian, Morteza (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    Today, in our beloved country of Iran and other parts of the world, reinforced concrete structures are used in large industrial projects, in some cases we see their very early failure even before the time of operation. This issue in the southern coasts of the country due to special weather conditions (humidity and high temperature) and the existence of the offensive ions such as chlorine and sulfate in seawater are more important and we always face with severe corrosion of reinforcement and reduced service life of concrete structures in these areas. Despite this, little research has been done on the reliability of concrete facilities in the vicinity of the Caspian Sea in the north of the... 

    Behavior of reinforced concrete beams post-tensioned in the critical shear region

    , Article Engineering Structures ; Volume 29, Issue 7 , 2007 , Pages 1465-1474 ; 01410296 (ISSN) Shamsai, M ; Sezen, H ; Khaloo, A. R ; Sharif University of Technology
    2007
    Abstract
    A new shear strengthening method involving post-tensioning of the critical shear region of reinforced concrete beams is investigated. Thirty-one experiments were carried out using 24 specimens. Theoretical load-deflection relations are obtained from moment-curvature analysis using fiber cross sections and taking into consideration the effects of different concrete confinements along the beam length. A theoretical shear strength model that includes three shear resisting components in the critical shear region of the strengthened beams is provided. Experimental results from beams with and without shear strengthening are compared with calculated load-deflection relations and predicted shear... 

    Behavior study of high impact resistant reinforced concrete frames using crack conduction method

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Heidarzadeh, N ; Razavi, S. M ; Shamsaei, N ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    In this study, the influence of crack conduction method on behavior of reinforced concrete (RC) frame under iterative high impact loading were experimented. To investigate the structural behavior through large deformations and progressive damage and to identify the failure modes, the falling weight and falling height were set more than the structural strength in elastic state. A comprehensive scheme which indicated influence of location of initial cracks on behavior and failure mode of structure was developed. Falling weight impact test was conducted on twenty-one laboratory scaled RC frames which were categorized in four series regard to considered scheme. Concrete volume and compressive... 

    Life Cycle Cost Analysis and Comparison Of Concrete Structures with and Without Shear Walls by Endurance Time Method

    , M.Sc. Thesis Sharif University of Technology Eslami Farkoosh, Ehsan (Author) ; Esmaeilpour Estekanchi, Homayun (Supervisor)
    Abstract
    The actual value of structures should not be evaluated only based on initial cost, because failure cost and economical losses due to corrosion and natural hazards can be catastrophic. When a long life Performance of a structure is expected, life cycle cost analysis is the best way to assess and compare economic value of different design choices. The main purpose of this work is investigating the effect of shear walls in limit state cost and total cost . Results demonstrate that shear walls can reduce limit state cost up to 70 percent . Furthermore the influence of increasing thickness of shear walls and effect of reducing dead loads in total life cycle cost is discussed. It is shown that... 

    Improvement in Reinforced Concrete Beam-Column Connections Behaviour using FRP Sheets

    , M.Sc. Thesis Sharif University of Technology Rokrokian, Ali (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Performance of reinforced concrete frames is highly dependent on detailing of the joint connections between its members, such as beams and columns. To have a good structural behavior, joints must show ductile behavior and designed based on the philosophy of strong column-weak beam. In the case of sever lacking ductility, strength or even rigidity of the connections, or having a weak column-strong beam, in the existing structures, there is a need for seismic upgrading of the connection. There are several ways for seismic upgrading of this type of connections.In the last decade Fiber Reinforced Polymer (FRP) widely has been used to strengthening the reinforced concrete (RC) members. Most of... 

    Assessing and Fragility Analysis of Collapse of R.C Buildings

    , Ph.D. Dissertation Sharif University of Technology Hoseini, Abbas (Author) ; Ghaemian, Mohsen (Supervisor)
    Abstract
    Global collapse in earthquake engineering refers to the inability of a structural system to sustain gravity loads when subjected to seismic excitation. Dynamic instability phenomena in exist buildings have a key position and for this reason strict criteria in structural seismic assessing codes presented for avoiding this phenomena. At this study, dynamic instability of five designed concrete buildings with moment frame system, mixed up 3, 6, 9, 12 and 15 story building, are investigated. P-delta effects, deterioration in strength and stiffness and cyclic deterioration in structural components considered in this investigation. For modeling nonlinear behavior of elements, experimental results... 

    Crack Propagation Modeling in Arched Concrete Structures Reinforced by FRP Using XFEM and Damage Model

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Amir Hossein (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In practice, structures made of concrete are full of cracks. The strength of concrete is mainly determined by the tensile strength, which is about 10% of the compressive strength. As long as cracking in concrete is unavoidable, we have to try to minimize their detrimental effects. This objective can be achieved by resisting (or limiting) propagation of existing cracks. Because of this, reinforcement (mostly steel) is used to increase the carrying capacity of the material and to control the development of cracks. Concrete structures that fail, already shows a large number of large and small cracks before their maximum carrying capacity is reached. The failure of concrete can be characterized... 

    Introducing a response-based duration metric and its correlation with structural damages

    , Article Bulletin of Earthquake Engineering ; Volume 17, Issue 11 , 2019 , Pages 5987-6008 ; 1570761X (ISSN) Mashayekhi, M ; Harati, M ; Ashoori Barmchi, M ; Estekanchi, H. E ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    This study proposes a response-based parameter for strong motion duration which is computed for structures and is the total time they are nonlinear during an earthquake. Correlation between structural response and duration for structures, subjected to a set of spectrum matched ground motions, is employed to examine the efficiency of the proposed method. The spectral matching procedure ensures that the influence of amplitude and frequency content of motions on structural response variability is significantly removed. Four concrete building type systems are studied and correlation coefficients of structural response with the proposed duration definition are examined. Comparison of the proposed... 

    Predictive equations for drift ratio and damage assessment of RC shear walls using surface crack patterns

    , Article Engineering Structures ; Volume 190 , 2019 , Pages 410-421 ; 01410296 (ISSN) Momeni, H ; Dolatshahi, K. M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The purpose of this paper is to quantify the extent of damage of rectangular reinforced concrete shear walls after an earthquake using surface crack patterns. One of the most important tasks after an earthquake is to assess the safety and classify the performance level of buildings. This assessment is usually performed by visual inspection that is prone to significant errors. In this research, an extensive database on the images of damaged rectangular reinforced concrete shear walls is collected from the literature. This database includes more than 200 images from experimental quasi-static cyclic tests. Using the concept of fractal geometry, several probabilistic models are developed by... 

    Prediction of the degree of steel corrosion damage in reinforced concrete using field-based data by multi-gene genetic programming approach

    , Article Soft Computing ; Volume 26, Issue 18 , 2022 , Pages 9481-9496 ; 14327643 (ISSN) Rajabi, Z ; Eftekhari, M ; Ghorbani, M ; Ehteshamzadeh, M ; Beirami, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Unanticipated failure of reinforced concrete structures due to corrosion of steel rebar embedded in concrete causes to increase the demand for finding methods to forecast the service life of concrete structures. In this field, the success of machine learning-based methods leads to the use of multi-gene genetic programming (MGGP) method for classifying the degree of corrosion destruction of steel in reinforced concrete in this paper. Despite the common application of MGGP that is the symbolic regression, in this research, MGGP was adapted to use in classification tasks. Accordingly, a large field database has been collected from different regions in the Persian Gulf for modeling of MGGP and... 

    On the modal incremental dynamic analysis of reinforced concrete structures, using a trilinear idealization model

    , Article Engineering Structures ; Volume 33, Issue 4 , 2011 , Pages 1117-1122 ; 01410296 (ISSN) Zarfam, P ; Mofid, M ; Sharif University of Technology
    Abstract
    In order to estimate the seismic demands at the performance level, the inelastic behavior of concrete structures should be considered. Incremental dynamic analysis (IDA) based on a nonlinear response time history analysis (NL-RHA) is considered to be the most accurate method in seismic demand calculations. However, modal incremental dynamic analysis (MIDA), based on the equivalent single-degree-of-freedom (SDF) oscillator, is also often used in studying structural engineering performances. As the MIDA method has usually not been applied to reinforced concrete (RC) structures, in this study an attempt is made to investigate the performances of RC frames and to compare the results obtained...