Loading...
Search for: remediation
0.005 seconds
Total 50 records

    Carbon nanotubes composite membrane for water desalination

    , Article Advances in Science, Technology and Innovation ; 2021 , Pages 163-184 ; 25228714 (ISSN) Taghipour, S ; Khadir, A ; Taghipour, M ; Sharif University of Technology
    Springer Nature  2021
    Abstract
    The demand for freshwater has enormously risen the water stress in various parts of the globe. Accessibility of clean water is crucial for sustainable development involving socioeconomic and environmental promotion. Considering the fact that 96.5% of all Earth’s water is related to seawater, desalination (producing clean potable water from sea or saline water) can be considered as a leading solution to fulfill water scarcity problem. Among various advanced and conventional techniques, carbon nanotube (CNT) membrane has become an attractive alternate for most of water treatment methods owing supreme features such as easy operationality, low energy and expense requirement, high water... 

    Enhanced trichloroethene degradation performance in innovative nanoscale CaO2 coupled with bisulfite system and mechanism investigation

    , Article Separation and Purification Technology ; Volume 278 , 2022 ; 13835866 (ISSN) Sun, Y ; Sun, X ; Ali, M ; Shan, A ; Idrees, A ; Yang, C ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The effect of bisulfite (HSO3–) in nCaO2/Fe(III)/HSO3– system on improving HO• generation and trichloroethene (TCE) removal was innovatively reported. The enhancement mechanism of HSO3– for TCE removal in nCaO2/Fe(III)/HSO3– system was caused not only by the complexing and reducing effects on promoting the conversion of Fe(III) to Fe(II), but also due to the reaction with O2 in water to produce SO4–• for accelerating TCE degradation. A double effect of nCaO2 as an oxidant source to generate HO• and as a O2 source to promote SO4–• generation was revealed. A pseudo-second-order kinetic model of TCE removal was determined and 94.6% TCE degradation was achieved within 60 min at the... 

    An overview on eco-friendly polymer composites for heavy metal ion remediation

    , Article Current Analytical Chemistry ; Volume 17, Issue 6 , 2021 , Pages 737-753 ; 15734110 (ISSN) Nazir, M. S ; Palvasha, B. A ; Tahir, Z ; Ul Hassan, S ; Ali, Z ; Akhtar, M. N ; Azam, K ; Abdullah, M. O ; Sharif University of Technology
    Bentham Science Publishers  2021
    Abstract
    Background: Water contamination by noxious heavy metals due to urbanization is a global environmental problem. Heavy metal ions pollution makes the water unsuitable for drinking and is also highly toxic to human beings and eco-system. The remediation of heavy metals is therefore very crucial. Methods: Adsorbents based on biopolymer and eco-friendly polymer composites have been developed and fabricated to remediate and remove heavy metals from the ecosystem. Results: In recent years biocomposites have been successful as cost-effective adsorbents for the remediation of various contaminants with their eco-friendly nature and sustainability. Conclusion: This review article gives an overview on... 

    Spatially distributed influence of agro-environmental factors governing nitrate fate and transport in an irrigated stream-aquifer system

    , Article Hydrology and Earth System Sciences ; Volume 19, Issue 12 , 2015 , Pages 4859-4876 ; 10275606 (ISSN) Bailey, R. T ; Ahmadi, M ; Gates, T. K ; Arabi, M ; Sharif University of Technology
    Copernicus GmbH  2015
    Abstract
    Elevated levels of nitrate (NO3) in groundwater systems pose a serious risk to human populations and natural ecosystems. As part of an effort to remediate NO3 contamination in irrigated stream-aquifer systems, this study elucidates agricultural and environmental parameters and processes that govern NO3 fate and transport at the regional (500 km2), local (50 km2), and field scales (<1 km2). Specifically, the revised Morris sensitivity analysis method was applied to a finite-difference nitrogen cycling and reactive transport model of a regional-scale study site in the lower Arkansas River valley in southeastern Colorado. The method was used to rank the influence of anthropogenic activities and... 

    E ectiveness of a vertical micropile system in mitigating the liquefaction-induced lateral spreading e ects on pile foundations: 1 g large-scale shake table tests

    , Article Scientia Iranica ; Volume 29, Issue 3 A , 2022 , Pages 1038-1058 ; 10263098 (ISSN) Kavand, A ; Haeri, S. M ; Raisianzadeh, J ; Afzalsoltani, S ; Sharif University of Technology
    Sharif University of Technology  2022
    Abstract
    Liquefaction-induced lateral spreading caused severe damages to pile foundations during past earthquakes. Micropiles can be used as a mitigation strategy against lateral spreading e ects on pile foundations. However, the available knowledge about the possible efficiency of this strategy is quite limited. In this regard, the present study aims to evaluate the e ectiveness of a vertical micropile system as a lateral spreading countermeasure using large-scale 1 g shake table tests on 3 x 3 pile groups. The results showed that the micropile system was not able to e ectively reduce the bending moments in piles; however, it considerably reduced the lateral soil pressures exerted on the upslope... 

    Numerical Simulation and Enalysis of an Electrokinetically-driven Microdispenser

    , M.Sc. Thesis Sharif University of Technology Haroutunian, Artin (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Shafiee, Mohammad Behshad (Supervisor)
    Abstract
    Nowadays Lab-on-a-chip systems are being widely used in medical applications, especially in analyzing minute volumes of blood for diagnosis and treatment of some crucial diaseses like diabetic. A Lab-on-a-chip is comprised of a variety of components such as micromixer, microdispenser, detection and separation units and so on. In this thesis, however, we have analyzed and numerically simulated a microdispenser which is electrokinetically driven. In other words, electrical potentials are applied to electrodes in order to conduct two fluids within a cross microchannel, and distribution of a sample fluid takes place due to appropriately applied potentials. In order to analyze and simulate the... 

    In-situ Pb2+ remediation using nano iron particles

    , Article Journal of Environmental Health Science and Engineering ; Volume 13, Issue 1 , 2015 ; 2052336X (ISSN) Fadaei Tehrani, M. R ; Shamsai, A ; Vossughi, M ; Sharif University of Technology
    BioMed Central Ltd  2015
    Abstract
    Originally, application of nano zero valent iron (nZVI) particles for the removal of lead (Pb2+) in porous media was studied. At first, stabilized nZVI (S-nZVI) was prepared and characterized, then used in batch and continuous systems. Based on the batch experiments, corresponding reaction kinetics well fitted with the pseudo-first-order adsorption model, and reaction rate ranged from 0.01 to 0.04 g/mg/min depend on solution pH and the molar ratio between Fe and Pb. In batch tests, optimal condition with more than 90% removal efficiency at 60 min was observed at a pH range of 4 to 6 and Fe/Pb ratio more than 2.5. Continuous experiments exposed that Pb2+ remediation was as well influenced by... 

    A system wide scheme for mitigation of voltage instability

    , Article 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, Seattle, WA, 15 March 2009 through 18 March 2009 ; 2009 ; 9781424438112 (ISBN) Amraee, T ; Feuillet, R ; Ranjbar, A. M ; Mozafari, B ; Sharif University of Technology
    2009
    Abstract
    In this paper, a system wide scheme is proposed to arrest voltage instability. This scheme consists of two stabilizing and securing parts. For post- contingency situations, where there are no equilibrium solutions, first, the stabilizing scheme finds the closest solvable operating point, and then passes this point to the securing scheme. The securing scheme brings the solvable, but insecure operating point, back to a secure and stable one. Also, a voltage stability indicator is proposed to monitor the available margin to the collapse point. The proposed stabilizing and securing model are solved using the sequential quadratic programming technique. ©2009 IEEE  

    Dynamic Planning of Transmission Expansion

    , M.Sc. Thesis Sharif University of Technology Naseri, Alireza (Author) ; Hosseini, Hamid (Supervisor)
    Abstract
    Goal of this project is to present a method for dynamic transmission planning in restructured environment by system regulator. Congestion, fair competition in power market, stakeholders’ desires in transmission expansion, transmission investment traits, creating incentive for investment and transcos revenue are considered in this work. Presentation of methodology for reliability evaluation is necessary because of increasing uncertainties due to restructuring. Remedial action method is suggested for uncertainties analysis and reliability index presented for measuring degree of reliability. The method has been applied to the IEEE 14-bus system. ... 

    New hybrid nanocomposite of copper terephthalate MOF-graphene oxide: synthesis, characterization and application as adsorbents for toxic metal ion removal from Sungun acid mine drainage

    , Article Environmental Science and Pollution Research ; Volume 24, Issue 28 , 2017 , Pages 22353-22360 ; 09441344 (ISSN) Rahimi, E ; Mohaghegh, N ; Sharif University of Technology
    Abstract
    The application of a hybrid Cu(tpa).GO (Cu(tpa) copper terephthalate metal organic framework, GO graphene oxide) composite as a new adsorbent for the removal of toxic metal ions was reported. New hybrid nanocomposite with excellent dispersibility and stability was successfully fabricated by the simple and effective ultrasonication method. The synthesized composite was characterized by scanning electron microscopy (SEM), UV-Vis and Fourier-transform infrared (FT-IR) techniques. The characterization results concluded that the binding mechanism of the Cu(tpa) and GO was related to both packing and hydrogen bonding. For scrutinizing the sorption activity, the prepared adsorbents were assessed... 

    Dissolution and remobilization of NAPL in surfactant-enhanced aquifer remediation from microscopic scale simulations

    , Article Chemosphere ; Volume 289 , 2022 ; 00456535 (ISSN) Ramezanzadeh, M ; Aminnaji, M ; Rezanezhad, F ; Ghazanfari, M. H ; Babaei, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, the dissolution and mobilization of non-aqueous phase liquid (NAPL) blobs in the Surfactant-Enhanced Aquifer Remediation (SEAR) process were upscaled using dynamic pore network modeling (PNM) of three-dimensional and unstructured networks. We considered corner flow and micro-flow mechanisms including snap-off and piston-like movement for two-phase flow. Moreover, NAPL entrapment and remobilization were evaluated using force analysis to develop the capillary desaturation curve (CDC) and predict the onset of remobilization. The corner diffusion mechanism was also applied in the modeling of interphase mass transfer to represent NAPL dissolution as the dominant mass transfer... 

    Remediation of trapped DNAPL enhanced by SDS surfactant and silica nanoparticles in heterogeneous porous media: experimental data and empirical models

    , Article Environmental Science and Pollution Research ; Volume 27, Issue 3 , 2020 , Pages 2658-2669 Ramezanzadeh, M ; Khasi, S ; Fatemi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Springer  2020
    Abstract
    The remediation of nonaqueous phase liquids (NAPLs) enhanced by surfactant and nanoparticles (NP) has been investigated in numerous studies. However, the role of NP-assisted surfactants in the dissolution process is still not well discussed. Besides, there is a lack of empirical dissolution models considering the effects of initial residual saturation Strap, NAPL distribution, and surfactant concentration in NAPL-aqueous phase systems. In this work, micromodel experiments are conducted to quantify mass transfer coefficients for different injected aqueous phases including deionized water, SDS surfactant solutions, and NP-assisted solutions with different levels of concentrations and flow... 

    Highly efficient degradation of trichloroethylene in groundwater based on persulfate activation by polyvinylpyrrolidone functionalized Fe/Cu bimetallic nanoparticles

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 4 , Augus , 2021 ; 22133437 (ISSN) Idrees, A ; Shan, A ; Ali, M ; Abbas, Z ; Shahzad, T ; Hussain, S ; Mahmood, F ; Farooq, U ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Polyvinylpyrrolidone coated nano zero valent iron-copper (PVP-nZVI-Cu) bimetallic nanoparticles were successfully synthesized for dechlorination of trichloroethylene (TCE) into non-toxic byproducts in the presence of persulfate oxidant. The average size of PVP-nZVI-Cu nanoparticles (3-25 nm) was smaller than PVP-nZVI (25-60 nm) and nZVI (50-90 nm) particles due to PVP role in the prevention of iron aggregation and agglomerations. The synthesized PVP-nZVI-Cu nanoparticles were used as an efficient persulfate (PS) activator to generate reactive oxygen species (ROSs) for the degradation of TCE. The complete removal of TCE (99.6%) was achieved in the presence of 0.4 g/L of PVP-nZVI-Cu... 

    Sensitivity-based optimal remedial actions to damp oscillatory modes considering security constraints

    , Article International Journal of Electrical Power and Energy Systems ; Volume 135 , 2022 ; 01420615 (ISSN) Setareh, M ; Parniani, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper proposes a comprehensive analytic method for applying various optimal remedial actions to improve critical electromechanical modes damping without jeopardizing damping of non-critical modes and violating security constraints of power system. Generators and reactive power sources redisptach, demand side management and the generators voltage reference tuning are remedial actions that are considered here. Dynamic equations of the flux-decay dynamic model of generators, standard dynamic models of excitation system and power system stabilizer and algebraic equations of active and reactive powers balance are formulated in the quadratic eigenvalue problem framework. With simultaneous use... 

    Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells

    , Article Journal of Contaminant Hydrology ; Volume 210 , 2018 , Pages 50-64 ; 01697722 (ISSN) Hosseini, S. M ; Tosco, T ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and... 

    Assessment of asphaltene deposition due to titration technique

    , Article Fluid Phase Equilibria ; Volume 339 , 2013 , Pages 72-80 ; 03783812 (ISSN) Chamkalani, A ; Amani, M ; Kiani, M. A ; Chamkalani, R ; Sharif University of Technology
    2013
    Abstract
    Due to problems followed by asphaltene deposition, which cause many remedial processes and costs, it seemed necessary to develop equations for determining asphaltene precipitation quantitatively or qualitatively. In this study a new scaling equation as a function of temperature, molecular weight, and dilution ratio (solvent) has been developed. This equation can be used to determine the weight percent of precipitated asphaltene in the presence of different precipitants (solvents). The proposed methodology utilizes least square support vector machines/regression (LSSVM/LSSVR) to perform nonlinear modeling. This paper proposes a new feature selection mechanism based on coupled simulated... 

    Soft error modeling and remediation techniques in ASIC designs

    , Article Microelectronics Journal ; Volume 41, Issue 8 , August , 2010 , Pages 506-522 ; 00262692 (ISSN) Asadi, H ; Tahoori, M. B ; Sharif University of Technology
    2010
    Abstract
    Soft errors due to cosmic radiations are the main reliability threat during lifetime operation of digital systems. Fast and accurate estimation of soft error rate (SER) is essential in obtaining the reliability parameters of a digital system in order to balance reliability, performance, and cost of the system. Previous techniques for SER estimation are mainly based on fault injection and random simulations. In this paper, we present an analytical SER modeling technique for ASIC designs that can significantly reduce SER estimation time while achieving very high accuracy. This technique can be used for both combinational and sequential circuits. We also present an approach to obtain... 

    Monitoring data quality using hoteling T 2 multivariate control chart

    , Article Communications in Statistics: Simulation and Computation ; 2021 ; 03610918 (ISSN) Ershadi, M. J ; Akhavan Niaki, S. T ; Azizi, A ; Ashtarian Esfahani, A ; Edris Abadi, R ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Nowadays, data and information are recognized as a precious resource in an organization. Data quality indicators help organizations manage the quality of data quantitatively and improve organizational processes. Organizations manage data and information with the help of information systems and make decisions within the framework of data collected and analyzed. On the other hand, continuous evaluation of the quality of data flow in systems can lead to a preventive program to formulate strategies for improving performance. This can be done effectively and efficiently in the form of control charts. In this paper, control charts are employed to monitor the quality of data flow in information... 

    A review on catalytic reduction/degradation of organic pollution through silver-based hydrogels

    , Article Arabian Journal of Chemistry ; Volume 15, Issue 9 , 2022 ; 18785352 (ISSN) Dadashi, J ; Ali Ghasemzadeh, M ; Alipour, S ; Zamani, F ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Various challenging pollutants are produced in the environment by organic materials of diverse industries including leather, paint, and textile. Nowadays, it is vital to develop efficient manners regarding the fundamental issues and removing pollutants. Such pollutants can be effectively removed from the environment through heterogeneous catalysts. Recently, a huge deal of interest has been attracted by hydrogel-based metal catalysts as heterogeneous and efficient catalysts. In this regard, silver with its unique features is suitable for environmental remediation. Hence, the present review deals with summarizing the present advances in the synthesis of silver-based hydrogel catalysts, as... 

    Experimentally based pore network modeling of NAPL dissolution process in heterogeneous porous media

    , Article Journal of Contaminant Hydrology ; Volume 228 , November , 2020 Khasi, S ; Ramezanzadeh, M ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Practical designs of non-aqueous phase liquids (NAPLs) remediation strategies require reliable modeling of interphase mass transfer to predict the retraction of NAPL during processes such as dissolution. In this work, the dissolution process of NAPL during two-phase flow in heterogeneous porous media is studied using pore-network modeling and micromodel experiments. A new physical-experimental approach is proposed to enhance the prediction of the dissolution process during modeling of interphase mass transfer. In this regard, the normalized average resident solute concentration is evaluated for describing the dissolution process at pore-level. To incorporate the effect of medium...