Loading...
Search for: renewable-sources
0.01 seconds

    Evaluation of Location and Optimization of Capacity of On-grid Photovoltaic Power Plant Regarding Power Systems Static Security

    , M.Sc. Thesis Sharif University of Technology Pourhosseini, Hossein (Author) ; Maleki, Abbas (Supervisor) ; Parniani, Mostafa (Supervisor)
    Abstract
    Static security of the power grid means the ability of the power system to withstand against unwanted events, in such a way that it remains in its safe state and operates within the acceptable range of its operation. Considering the importance of renewable energies and the increasing need for the presence of renewable sources of electrical energy production, this research investigates the location and the optimal capacity of grid-connected photovoltaic(PV) power plants as the most important renewable source of electric energy production, with emphasis on preserving static security of the System. PV power plants are considered to have a high penetration rate in the network, and the static... 

    RANS simulations of the stepped duct effect on the performance of ducted wind turbine

    , Article Journal of Wind Engineering and Industrial Aerodynamics ; Volume 145 , October , 2015 , Pages 270-279 ; 01676105 (ISSN) Zabihzade Roshan, S ; Alimirzazadeh, S ; Rad, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    With the rise in oil price and population growth, renewable energies are assumed to be the main source of energies for the next generation. Wind as a natural, eco-friendly and renewable source of energy has been at the center of concentration for decades. Recently there has been some ideas regarding the self-regulating urban wind turbines. Researchers have shown that a proper enclosure increases the wind velocity and therefore more torques can be exerted on the rotors, therefore more power can be generated. These enclosures are light and cheap, therefore they are applicable and effective. In the present study, an enclosure was modified to increase the exerted torque with implementing a step... 

    Heat recovery of exhaust gas in automotive paint ovens

    , Article 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, ECOS 2010, Lausanne, 14 June 2010 through 17 June 2010 ; Volume 5 , 2010 , Pages 381- ; 9781456303204 (ISBN) Hanafizadeh, P ; Khaghani, A ; Shams, H ; Saidi, M.H ; Ecole Polytechnique Federale de Lausanne; Schweizerische Eidgenossenschaft ; Sharif University of Technology
    Aabo Akademi University  2010
    Abstract
    The rising cost of energy and the global warming in recent years have highlighted the need of more advanced systems with higher efficiency and less gas emissions. Consequently, plenty of researches have done on waste heat recovery and renewable sources of energy recently. The target of the present research is feasibility study of heat recovery in automobiles' paint ovens and designing an efficient system to use the lost energy. Research has been carried out on the theory, evaluating the amount of lost and available energy through Thermodynamics and heat transfer principle and choosing applicable design and construction of heat exchanger, especially for their use in ovens for energy recovery,... 

    Ranking locations for producing hydrogen using geothermal energy in Afghanistan

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 32 , 2020 , Pages 15924-15940 Mostafaeipour, A ; Hosseini Dehshiri, S. J ; Hosseini Dehshiri, S. S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Geothermal energy is a type of renewable energy with high availability and independence from climatic and atmospheric conditions. It has been shown that geothermal energy is technically, economically and environmentally more suitable for hydrogen production than other renewable sources. Hydrogen has wide applications in many fields including cooling, oil, gas, petrochemical, nuclear, and energy industries. Afghanistan has significant potential in geothermal power generation and also several hydrogen-consuming industries that provide opportunities for geothermal-based hydrogen production. This study attempted to find suitable locations for the construction of geothermal power plant for... 

    Robust energy management of residential energy hubs integrated with power-to-x technology

    , Article 2021 IEEE Texas Power and Energy Conference, TPEC 2021, 2 February 2021 through 5 February 2021 ; 2021 ; 9781728186122 (ISBN) Habibifar, R ; Khoshjahan, M ; Saravi, V. S ; Kalantar, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Growing interest in the intermittent renewable energy sources may jeopardize the flexibility of power systems. In order to improve the flexibility of modern power systems, the surplus electricity generated by renewable sources can be deployed into several carriers, such as natural gas and heating energy via power-to-gas (PtG) and power-to-heat (PtH) technologies. This paper proposes an optimal daily energy management model of residential energy hubs integrated with power-to-X technologies. The proposed energy hub is incorporated with PtG, PtH, combined heat and power (CHP) facilities, and thermal storage to meet the required electrical, gas, and heating demands. In order to capture the... 

    A MILP model for phase identification in LV distribution feeders using smart meters data

    , Article 2019 Smart Gird Conference, SGC 2019, 18 December 2019 through 19 December 2019 ; 2019 ; 9781728158945 (ISBN) Akhijahani, A. H ; Hojjatinejad, S ; Safdarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Nowadays, with the increasing use of renewable energies in low voltage (LV) feeders, phase balancing research areas are of great importance. However, the lack of information about the hosting phase of customers and renewable sources is the missing link in such researches. To address this barrier, this paper proposes a mixed integer linear programming (MILP) method to identify the hosting phase of customers as well as renewable energies, such as photovoltaic (PV) panels. The model considers potential error in the input data. To overcome the complexity caused by data error, the input data in several time intervals are taken into account by the model. The model solves the phase identification... 

    A novel ground thermal recovery system for horizontal ground heat exchangers in a hot climate

    , Article Energy Conversion and Management ; Volume 224 , 2020 Sedaghat, A ; Habibi, M ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Ground Source Heat Pumps (GSHP), as a renewable source heating, ventilating, and air conditioning (HVAC) technology, has the highest energy efficiency among different heat pump types. One of the major drawbacks of GSHPs is the long-term ground temperature variations as a result of heat accumulation or depletion in the ground. This contribution puts forward a novel ground thermal recovery system for horizontal ground heat exchangers in a hot climate. The proposed recovery system consists of open-loop horizontal Ground-Air Heat Exchangers (GAHEs) that are buried between the horizontal Ground-Water Heat Exchangers (GWHEs). A fan supplies ambient air to the GAHE pipes when the soil around GWHE... 

    Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles

    , Article Journal of Energy Storage ; Volume 34 , 2021 ; 2352152X (ISSN) Hosseinzadeh, K ; Montazer, E ; Shafii, M. B ; Ganji, A. R. D ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Latent thermal energy storage dependent on Phase Change Materials (PCMs) proposes a possible answer for modifying the availability of alternating energy from renewable sources such as wind and solar. They can possibly store large amounts of energy in moderately tiny dimensions as well as through almost isothermal procedures. Notwithstanding, low thermal conductivity values is a significant disadvantage of the present PCMs which critically restrict their energy storage usage. Likewise, this unacceptably decreases the solidification/melting rates, hence causing the system response time to be excessively lengthy. The present examination accomplished a better PCM solidification rate with a... 

    Enhanced electricity generation from whey wastewater using combinational cathodic electron acceptor in a two-chamber microbial fuel cell

    , Article International Journal of Environmental Science and Technology ; Volume 9, Issue 3 , 2012 , Pages 473-478 ; 17351472 (ISSN) Nasirahmadi, S ; Safekordi, A. A ; Sharif University of Technology
    2012
    Abstract
    While energy consumption is increasing worldwide due to population growth, the fossil fuels are unstable and exhaustible resources for establishing sustainable life. Using biodegradable compounds present in the wastewater produced in industrial process as a renewable source is an enchanting approach followed by scientists for maintaining a sustainable energy production to vanquish this problem for ulterior generations. In this research, bioelectricity generation with whey degradation was investigated in a two-chamber microbial fuel cell with humic acid as anodic electron mediator and a cathode compartment including combinational electron acceptor. Escherichia coli was able to use the... 

    Bio alcohol production from agricultural residues

    , Article 3rd International Symposium on Biotechniques for Air Pollution Control, Delft, 28 September 2009 through 30 September 2009 ; 2010 , Pages 167-174 ; 9780415582704 (ISBN) Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Abstract
    The bioconversion of abundant and renewable cellulosic biomass into ethanol as an alternative to petroleum is gaining importance due to the realization of diminishing natural oil and gas resources. Agricultural and foresty plant residues are an abundant and renewable source of sugar substrates that could be fermented to ethanol. A thermochemical treatment of biomass in which both cellulose and hemicellulose are hydrolyzed to soluble sugar is necessary before yeast fermentation. After thermochemical treatment, cellulase enzymes must be introduced in the system to hydrolyze any remaining cellulose. The simultaneous saccharification and fermentation (SSF), is a method which converts...