Loading...
Search for: reproducing-kernel-particle-method
0.008 seconds
Total 33 records

    , M.Sc. Thesis Sharif University of Technology Bagherzadeh, Mahsa (Author) ; Mohammadi Shodja, Hossien (Supervisor)
    Abstract
    The present study aims at determining the elastic fields of ultra-small flaws and defects. These defects are often introduced undesirably in elastic solids during fabrication and their sizes are normally in the order of couple of nano-meters. In this work, the elastic fields around a circular nano-void subjected to a uniform farfield uniaxial tension, also the elastic fields of a nano-sized mode I crack under remote uniform loading are studied. In this paper the strain gradient theory developed by Mindlin and co-workers in 1960s is employed. According to this theory, the strain energy density assumes the form of a positive-definite function of the strain components and their first gradient.... 

    Determination of the Plastic Zone at the Tip of a Crack in Pressure-Sensitive Materials Using RKPM

    , M.Sc. Thesis Sharif University of Technology Malgard, Afsaneh (Author) ; Mohammadi Shoja, Hossein (Supervisor) ; Jahanshahi, Mohsen (Supervisor)
    Abstract
    This project presents an outline of the crack tip stress fields in the presence of a plastic enclave around a growing fatigue crack using RKPM and Drucker-Prager criterion for pressure sensitive materials such as concrete and rock. Two distinguished features of RKPM are the arbitrarily high order smoothness and the interpolation property of the shape function which has kronecker delta property at the associated nodes. This method has proved to handle extreme material deformation and moving discontinuities. For the frictional materials such as rock in geotechnical engineering, a non-associated or associated Drucker- Prager plasticity model is appropriate for modeling its constitutive... 

    A remedy to gradient type constraint dilemma encountered in RKPM

    , Article Advances in Engineering Software ; Volume 38, Issue 4 , 2007 , Pages 229-243 ; 09659978 (ISSN) Shodja, H. M ; Hashemian, A ; Sharif University of Technology
    Elsevier Ltd  2007
    Abstract
    A major disadvantage of conventional meshless methods as compared to finite element method (FEM) is their weak performance in dealing with constraints. To overcome this difficulty, the penalty and Lagrange multiplier methods have been proposed in the literature. In the penalty method, constraints cannot be enforced exactly. On the other hand, the method of Lagrange multiplier leads to an ill-conditioned matrix which is not positive definite. The aim of this paper is to boost the effectiveness of the conventional reproducing kernel particle method (RKPM) in handling those types of constraints which specify the field variable and its gradient(s) conveniently. Insertion of the gradient term(s),... 

    Analysis of a Lamellar Inhomogeneity Via Repordusing Kernel Particle Method

    , M.Sc. Thesis Sharif University of Technology Raeis Hosseiny, Aydin (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    Nowadays, the excellent technological applications of composites have attracted the attentions of industry and numerous scientists. They are advantageous for their high tensile modulus, strength, and promising electrical and thermal properties. In applying the approach of lamellar inhomogeneity to real composites, the micro-geometries of the reinforcement must be considered such that they can be approximated as limiting case of an ellipsoid. In vapor grown carbon nanofiber, the fiber may have a diameter of about 150nm and length of 10-20 µm [1]. The modulus of carbon nanofiber is normally in the range of 100-600 GPa and sometimes even higher, whereas the modulus of some polymers is usually... 

    Buckling Analysis of Nano-Plates in the Context of Modified Couple Stress Theory Using RKPM

    , M.Sc. Thesis Sharif University of Technology Alemi, Bita (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    In this research, a new Kirchhoff plate model based on the modified couple stress theory has been utilized to derive the corresponding closed-form expression for the buckling load. Moreover, a numerical mesh-less method, Reproducing Kernel Particle Method (RKPM), in combination with Corrected Collocation Method (CCM) has been employed to model the nano-plate and calculate its buckling load in the framework of the modified couple stress theory. To this end, two kinds of nano-plates have been modeled, the square nano-plates with all edges simply supported 1) in the presence of the nano-void and 2) without the nano-void. It should be noted that the analytical and numerical solutions for the... 

    Augmented RKPM Modeling of a Glide Edge Dislocation Near a Grain Boundary in the Framework of Surface/Interface Elasticity

    , M.Sc. Thesis Sharif University of Technology (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    Traditional continuum theory of elasticity becomes remarkably inaccurate in the vicinity of singularities, and when the size eect is of concern. For example in the study of ultra-small objects and ultra-thin lms, near defects, near point of application of a concentrated load and as such, the classical solutions are not reliable. This work focuses on determination of the elastic elds of an edge dislocation near the grain boundary of two perfectly bonded nano-size crystals. It is proposed to study this problem in the context of surface/interface elasticity, and incorporate the eect of the grain boundary on the elastic elds. In contrast to the surface/interface elasticity theory, traditional... 

    Elastic Field of an Anticrack Via Reproducing Kernel Particle Method

    , M.Sc. Thesis Sharif University of Technology Sohrabpour, Amir Hossein (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    Meshless Methods using kernel approximation like Reproducing Kernel Particle Method (RKPM) are methods for solving partial differential equations that require only nodal data and a description of the geometry without requiring element connectivity data and mesh producing. An innovative method of nonplanar material partitioning method (NMPM) with implementation of RKPM is employed to calculate the stress intensity factor (SIF) at the tip of an anticrack sited in an isotropic plate under a remote applied loading. Numerical examples in comparison with the exact closed form expressions show that accurate SIF for mode I can be obtained.

     

    Study of Size Effect via Strain-gradient Elasticity Based RKPM in Nano-Structures

    , M.Sc. Thesis Sharif University of Technology Arshadi, Amir (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    In this thesis one of the mesh-free methods called RKPM is employed to solve the differential equations of strain-gradient elasticity. To this end the corresponding weak form is laid down. Subsequently the relevant stiffness-matrix is obtained by discretization of the weak form. To be sure about the accuracy of the relations, the problem of a plate weakened by a hole under uniform far-field tension, for which the exact solution is available in the literature, is solved. The obtained numerical result is in good agreement with the solution of Eshel and Rosenfeld. Afterwards, a plate containing a crack of finite length subjected to uniform far-field tension (mode I) is considered. This problem... 

    Reproducing Kernel particle method in plasticity of pressure-sensitive material with reference to powder forming process

    , Article Computational Mechanics ; Volume 39, Issue 3 , 2007 , Pages 247-270 ; 01787675 (ISSN) Khoei, A. R ; Samimi, M ; Azami, A. R ; Sharif University of Technology
    Springer Verlag  2007
    Abstract
    In this paper, an application of the reproducing kernel particle method (RKPM) is presented in plasticity behavior of pressure-sensitive material. The RKPM technique is implemented in large deformation analysis of powder compaction process. The RKPM shape function and its derivatives are constructed by imposing the consistency conditions. The essential boundary conditions are enforced by the use of the penalty approach. The support of the RKPM shape function covers the same set of particles during powder compaction, hence no instability is encountered in the large deformation computation. A double-surface plasticity model is developed in numerical simulation of pressure-sensitive material.... 

    Application of rkpm in numerical simulation of powder forming processes using cap plasticity model

    , Article 8th International Conference on Computational Plasticity: Fundamentals and Applications, COMPLAS VIII, Barcelona, 5 September 2005 through 7 September 2005 ; Issue PART 2 , 2005 , Pages 966-969 ; 849599979X (ISBN); 9788495999795 (ISBN) Samimi, M ; Khoei, A. R ; Sharif University of Technology
    2005
    Abstract
    In this paper, an application of the Reproducing Kernel Particle Method is presented in numerical simulation of powder forming processes using a cap plasticity model. A double-surface cap plasticity is developed within the framework of large deformation analysis in order to predict the non-uniform relative density distribution during powder die pressing. The RKPM technique is employed in the analysis of 2D compaction simulation. Numerical examples are presented to illustrate the applicability of the algorithm in modelling of powder forming processes  

    An Introduction to the Mathematical Theory of Generalized RKPM and Gradient RKPM

    , M.Sc. Thesis Sharif University of Technology Behzadan, Ali (Author) ; Mohammadi Shoja, Hossein (Supervisor)

    Modeling Material Discontinuities Via An Augmented RKPM and Performance of GRKPM in Fracture Mechanics

    , M.Sc. Thesis Sharif University of Technology Khezri, Mani (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    During the past decade, element free methods have achieved great successes. One of these methods is the so called RKPM which has a suitable structure for use in fracture mechanics problems. Despite all characteristic abilities of element free methods; these methods due to their higher order continuous differentiable approximations fail to model discontinuous material properties of the subjected domains. In this study by improving the collocation method in RKPM treatment of such conditions have been achieved. Also in this study performance of a new meshfree method in fracture mechanics problems has been analyzed. GRKPM is one of these methods which its suitable accuracy and convergence has... 

    RKPM approach to elastic-plastic fracture mechanics with notes on particles distribution and discontinuity criteria

    , Article CMES - Computer Modeling in Engineering and Sciences ; Volume 76, Issue 1 , 2011 , Pages 19-60 ; 15261492 (ISSN) Mashayekhi, M ; Shodja, H. M ; Namakian, R ; Sharif University of Technology
    2011
    Abstract
    A meshless method called reproducing kernel particle method (RKPM) is exploited to cope with elastic-plastic fracture mechanics (EPFM) problems. The idea of arithmetic progression is assumed to place particles within the refinement zone in the vicinity of the crack tip. A comparison between two conventional treatments, visibility and diffraction, to crack discontinuity is conducted. Also, a tracking to find the appropriate diffraction parameter is performed. To assess the suggestions made, two mode I numerical simulations, pure tension and pure bending tests, are executed. Results including J integral, crack mouth opening displacement (CMOD), and plastic zone size and shape are compared with... 

    RKPM with augmented corrected collocation method for treatment of material discontinuities

    , Article CMES - Computer Modeling in Engineering and Sciences ; Volume 62, Issue 2 , 2010 , Pages 171-204 ; 15261492 (ISSN) Shodja, H. M ; Khezri, M ; Hashemian, A ; Behzadan, A ; Sharif University of Technology
    2010
    Abstract
    An accurate numerical methodology for capturing the field quantities across the interfaces between material discontinuities, in the context of reproducing kernel particle method (RKPM), is of particular interest. For this purpose the innovative numerical technique, so-called augmented corrected collocation method is introduced; this technique is an extension of the corrected collocation method used for imposing essential boundary conditions (EBCs). The robustness of this methodology is shown by utilizing it to solve two benchmark problems of material discontinuities, namely the problem of circular inhomogeneity with uniform radial eigenstrain, and the problem of interaction between a crack... 

    A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect

    , Article International Journal of Mechanical Sciences ; Volume 52, Issue 10 , 2010 , Pages 1343-1356 ; 00207403 (ISSN) Kiani, K ; Sharif University of Technology
    Abstract
    A single-walled nanotube structure embedded in an elastic matrix is simulated by the nonlocal EulerBernoulli, Timoshenko, and higher order beams. The beams are assumed to be elastically supported and attached to continuous lateral and rotational springs to take into account the effects of the surrounding matrix. The discrete equations of motion associated with free transverse vibration of each model are established in the context of the nonlocal continuum mechanics of Eringen using Hamilton's principle and an efficient meshless method. The effects of slenderness ratio of the nanotube, small scale effect parameter, initial axial force and the stiffness of the surrounding matrix on the natural... 

    Analysis of Cohesive Crack Via Reproducing Kernel Particle Method (RKPM)

    , M.Sc. Thesis Sharif University of Technology Mohammad Nataj, Milad (Author) ; Shodja, Hossain (Supervisor)
    Abstract
    The aim of this work is to study a cohesive crack in an elastic solid with meshless method. The procedure uses Reproducing Kernel Particle Method (RKPM) formulation in conjunction with Penalty method for implementing all constraints, including the Essential Boundary Conditions (EBCs) and the constraints related to cohesive crack. Meanwhile subdomain technique is employed to diminish the compiling process to facilitate one. Study of Stress Intensity Factor (SIF) at the tip of the cohesive crack has also been dealt with particular interest  

    Numerical Modeling of a Nano Crack in Fcc Solids Using RKPM Based Dipolar Gradient Elasticity

    , M.Sc. Thesis Sharif University of Technology Shariatzadeh, Babak (Author) ; Mohammadi Shodja, Hosain (Supervisor)
    Abstract
    In many structures, crack creation is one of the most significant fracture mechanisms. To predict these fracture mechanisms accurate numerical modeling is necssary. Finite Element Method (FEM) is one of the substantial methods in analysis of numerical fracture problems in recent past decades. But, this method has difficulties in remeshing of elements in each step of calculation in fracture mechanics or large deformation analysis. Therefore, the theory was defined that, without using elements, just with setting of characteristics nodes in geometry of problem, the differential equations can be solved. These methods are called Meshfree or Meshless methods. RKPM is a new meshfree method for... 

    Elastoplastic Analysis of Planar Cracks Under Tension Using RKPM

    , M.Sc. Thesis Sharif University of Technology Mashayekhi, Mohammad (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    During recent years, many researches on meshfree methods to solve differential equations and crack problem have been accomplished, and acceptable results have been obtained. One of these methods which is widely used in fracture mechanics specially in problems including crack is RKPM (reproducing kernel particle method). RKPM is one of the modern numerical methods in solving differential equations that has been lately introduced and developed. In this method, the genuine response of the system is replaced with a good approximation of the real response called ‘Reproduced Function’. The formulation of this method obviates the need for discretizing the domain by meshing with elements. In this... 

    Numerical Modeling of Two Interacting Circular Holes Using a Gradient Elasticity Based Meshless Method

    , M.Sc. Thesis Sharif University of Technology Ramhormozian, Shahab (Author) ; Mohammadi Shoja, Hossain (Supervisor)
    Abstract
    A theory of gradient elasticity is used and numerically implemented by a meshless method that is called reproducing kernel particle method (RKPM) to model size effects. Some of the problems are modeled under the consideration of gradient elasticity for the first time and all of them are also modeled with classical elasticity to compare with gradient elasticity. First of all, the RKPM formulation and computing the amount of shape functions and requisite derivatives will be explained with details and a mathematical innovation that will decrease the computational cost seriously proposed for the first time. Several 1D and 2D shape functions with first and second derivatives that are resulted... 

    Determination of the Two-Dimensional Plastic Zone Size and SIF at the Crack Tip Using RKPM

    , M.Sc. Thesis Sharif University of Technology Hajali, Masoud (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    It is proposed to obtain the mode I plastic zone size and shape at the crack-tip in a work-hardening material using reproducing kernel particle method (RKPM). RKPM is a meshless technology which has proven very useful for solving problems of fracture mechanics. Ramberg-Osgood stress-strain relation is assumed. In this project the crack-tip stress intensity factor (SIF) before and after formation of the plastic zone will be examined. To impose the essential boundary conditions, penalty method is used. To construct the shape functions in the vicinity of the crack and crack-tip, both the diffraction and visibility methods are employed. The effects of different dilation parameters on SIF under...