Loading...
Search for: reservoir-performance
0.006 seconds

    Modification of vogel's inflow performance relationship (IPR) for dual porosity model

    , Article Petroleum Science and Technology ; Volume 31, Issue 16 , 2013 , Pages 1633-1646 ; 10916466 (ISSN) Eghbali, S ; Gerami, S ; Sharif University of Technology
    2013
    Abstract
    The performance of a solution gas-drive reservoir can be predicted using Vogel inflow performance relation (or IPR), which simply relates the deliverability of a well to bottom-hole pressure and average reservoir pressure. While many studies have shown the success of Vogel-type IPR for single porosity reservoirs, the applicability of this method for naturally fractured reservoirs (NFRs), is under question mainly because of the complex flow behavior in matrix and fracture systems. The present study is undertaken to determine if the relation between NFR flowing wellbore pressure and oil production rate could be described by Vogel's IPR. For this purpose, a synthetic dual porosity fractured... 

    Prediction of waterflood performance using a modified capacitance-resistance model: A proxy with a time-correlated model error

    , Article Journal of Petroleum Science and Engineering ; Volume 198 , 2021 ; 09204105 (ISSN) Mamghaderi, A ; Aminshahidy, B ; Bazargan, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Capacitance-Resistive Model (CRM), as a fast yet efficient proxy model, suffers from some limitations in modeling relatively complex reservoirs. Some current improvements on this proxy made it a more powerful simulator with updating parameters over time. However, the model's intrinsic uncertainty arisen from simplifying fluid-flow modeling by some limited number of constant parameters is not addressed yet. In this study, this structural limitation of CRM has been addressed by introducing a time-correlated model error, including stochastic and non-stochastic parameters, embedded into this proxy's formulation. The error term's non-stochastic parameters have been tuned to be used in forecasting... 

    A novel two-parameter relative permeability model

    , Article Journal of Porous Media ; Volume 15, Issue 11 , 2012 , Pages 1061-1066 ; 1091028X (ISSN) Ghoodjani, E ; Bolouri, S. H ; Sharif University of Technology
    B. House  2012
    Abstract
    The relative permeability curves are key factors for assessment of reservoir performance by numerical simulators. The widely used one-parameter models are not sufficiently flexible for fitting laboratory measured relative permeability data. These models only show a concave upward trend and cannot represent the S-shape behavior of relative permeability. The other three-parameter models are too complex to use in practical reservoir engineering calculations. In this paper, a novel two-parameter model is proposed that maintains the simplicity of previous models while having great flexibility over a full range of saturation. The two parameters L and U control the shape of the lower and upper part... 

    Optimal well location in surfactant flooding by genetic algorithm

    , Article 74th European Association of Geoscientists and Engineers Conference and Exhibition 2012 Incorporating SPE EUROPEC 2012: Responsibly Securing Natural Resources ; 2012 , Pages 5489-5491 ; 9781629937908 (ISBN) Ravandoust, R ; Chahardahcherik, M ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2012
    Abstract
    As many fields around the world are reaching maturity, the need to develop new tools that allows reservoir engineering to optimize reservoir performance is becoming more demanding. One of the more challenging and influential problems along these lines is the well placement optimization problem. Determining of the location of new wells is a complex problem that depends on reservoir and fluid properties, well and surface equipment specifications, and economic criteria. Various approaches have been proposed for this problem. Among those, direct optimization using the simulator as the evaluation function, although accurate, is in most cases infeasible due to the number of simulations required.... 

    Challenges of fluid phase behavior modeling in Iranian retrograde gas condensate reservoirs

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 37, Issue 6 , Feb , 2015 , Pages 663-669 ; 15567036 (ISSN) Nasriani, H. R ; Asadi, E ; Nasiri, M ; Khajenoori, L ; Masihi, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Production from gas condensate reservoirs requires precise determination of reservoir fluid properties along with their positive impact on real reservoir performance evaluation and fluid in place volume calculation. This fact is particularly important because liquid drop out phenomena occurs as a result of pressure drop due to fluid production and condensate remains in reservoir [Mohebzadeh, 2005. In this study the challenges and problems of fluid phase behavior simulation in southern Iranian retrograde gas condensate reservoirs is discussed. Most of the problems and challenges are inaccuracy of equation of states near the critical point, special conditions and produced fluid flow... 

    Performance of combined vorticity-based gridding and dual mesh method for gravity dominated reservoir flows

    , Article Journal of Petroleum Science and Engineering ; Volume 67, Issue 3-4 , 2009 , Pages 127-139 ; 09204105 (ISSN) Firoozabadi, B ; Ashjari, M. A ; Sharif University of Technology
    2009
    Abstract
    This paper presents a new combined method for accurate upscaling of two-phase displacements in highly heterogeneous reservoirs. The method has the capability to retain its high performance for various flow regimes, from viscous to gravity dominant displacements, without the need for further modifications and computational steps. Two different grids are incorporated for simulation. The grid on fine scale is used to recognize the complicated physics of flow which depends on dominated driving forces and their interaction with heterogeneity. However, to achieve a fast simulation, the global flow calculation is performed on the coarse scale grid using upscaled equivalent properties. The... 

    Possible pitfalls in pressure transient analysis: Effect of adjacent wells

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 9, Issue 4 , 2019 , Pages 3023-3038 ; 21900558 (ISSN) Mirzaalian Dastjerdi, A ; Eyvazi Farab, A ; Sharifi, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Abstract: Well testing is one of the important methods to provide information about the reservoir heterogeneity and boundary limits by analyzing reservoir dynamic responses. Despite the significance of well testing data, misinterpreted data can lead us to a wrong reservoir performance prediction. In this study, we focus on cases ignoring the adjacent well’s production history, which may lead to misinterpretation. The analysis was conducted on both homogeneous and naturally fractured reservoirs in infinite-acting and finite-acting conditions. The model includes two wells: one is “tested well” and the other is “adjacent one.” By studying different scenarios and focusing on derivative plots, it... 

    Error behavior modeling in Capacitance-Resistance Model: A promotion to fast, reliable proxy for reservoir performance prediction

    , Article Journal of Natural Gas Science and Engineering ; Volume 77 , May , 2020 Mamghaderi, A ; Aminshahidy, B ; Bazargan, H ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Using the original form of Capacitance-Resistance Model (CRM), as a waterflooding performance prediction tool, for modeling real reservoirs makes some unavoidable errors. Combination of this model with available data assimilation methods yields more powerful simulation tool with updating parameters over time. However, the inherent uncertainty arisen by modeling complex reservoirs with only a limited number of CRM parameters is not addressed yet. In this study, the model error behavior has been simulated through a physically-based dynamical system in which it has been correlated with the original model parameters. The ensemble-based Kalman filter (EnKF) data assimilation method has been... 

    The estimation of formation permeability in a carbonate reservoir using an artificial neural network

    , Article Petroleum Science and Technology ; Vol. 30, issue. 10 , Apr , 2010 , p. 1021-1030 ; ISSN: 10916466 Yeganeh, M ; Masihi, M ; Fatholah,i S ; Sharif University of Technology
    Abstract
    Reservoir permeability is an important parameter that its reliable prediction is necessary for reservoir performance assessment and management. Although many empirical formulas are derived regarding permeability and porosity in sandstone reservoirs, these correlations cannot be accurately depicted in carbonate reservoir for the wells that are not cored and for which there are no welltest data. Therefore, having a framework for estimation of these parameters in reservoirs with neither coring samples nor welltest data is crucial. Rock properties are characterized by using different well logs. However, there is no specific petrophysical log for estimating rock permeability; thus, new methods... 

    A numerical comparative study of various flooding techniques in hydrocarbon reservoirs

    , Article Journal of Porous Media ; Volume 15, Issue 2 , 2012 , Pages 101-112 ; 1091028X (ISSN) Naderan, H ; Manzari, M. T ; Hannani, S. K ; Sharif University of Technology
    2012
    Abstract
    This paper investigates the efficiency and performance of several of the fiooding techniques popular in secondary and enhanced oil recovery. These processes include water fiooding, immiscible and miscible gas fiooding, and several forms of water-alternating-gas (WAG) injection. The study is carried out numerically on a typical one-dimensional domain using an advanced high-resolution central scheme. Some performance indices such as oil cut drop, breakthrough time, and sweep efficiency were employed to evaluate the appropriateness of each injection strategy  

    The estimation of formation permeability in a carbonate reservoir using an artificial neural network

    , Article Petroleum Science and Technology ; Volume 30, Issue 10 , 2012 , Pages 1021-1030 ; 10916466 (ISSN) Yeganeh, M ; Masihi, M ; Fatholahi, S ; Sharif University of Technology
    2012
    Abstract
    Reservoir permeability is an important parameter that its reliable prediction is necessary for reservoir performance assessment and management. Although many empirical formulas are derived regarding permeability and porosity in sandstone reservoirs, these correlations cannot be accurately depicted in carbonate reservoir for the wells that are not cored and for which there are no welltest data. Therefore, having a framework for estimation of these parameters in reservoirs with neither coring samples nor welltest data is crucial. Rock properties are characterized by using different well logs. However, there is no specific petrophysical log for estimating rock permeability; thus, new methods... 

    Estimation of underground interwell connectivity: A data-driven technology

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 116 , 2020 , Pages 144-152 Jafari Dastgerdi, E ; Shabani, A ; Zivar, D ; Jahangiri, H. R ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2020
    Abstract
    Water injection into petroleum reservoirs is widely performed around the world for enhancing oil recovery. Understanding the underground fluid path is an important factor in improving reservoir performance under waterflooding operation. This may be used to optimize subsequent oil recovery by changing injection patterns, assignment of well priorities in operations, recompletion of wells, targeting infill drilling, and reduce the need for expensive surveillance activities. Most of the hydrocarbon reservoirs are equipped with sensors that measure the flow rate, pressure, and temperature in the wellbores continuously. Valuable and useful information about the interwell connections can be... 

    Insights into the pore-scale mechanisms of formation damage induced by drilling fluid and its control by silica nanoparticles

    , Article Energy and Fuels ; Volume 34, Issue 6 , 20 May , 2020 , Pages 6904-6919 Mohammadi, M ; Mahani, H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    The formation damage (FD) caused by the invasion of drilling fluid severely affects reservoir performance during production. Most of the published research studies which address this type of FD have been carried out at the core or field scale. Thus, the main aim of the paper is to investigate the pore-scale mechanisms of FD induced by drilling fluids and their control with silica nanoparticles (NPs) using a microfluidic approach. The proper identification of the mechanisms of FD can lead to the proper selection of NP type and concentration as well as a suitable method to remediate FD. The micromodel was designed in a way to closely simulate the cross-flow at the wellbore surface. A... 

    Prediction of waterflood performance using a modified capacitance-resistance model: A proxy with a time-correlated model error

    , Article Journal of Petroleum Science and Engineering ; Volume 198 , March , 2020 Mamghaderi, A ; Aminshahidy, B ; Bazargan, H ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Capacitance-Resistive Model (CRM), as a fast yet efficient proxy model, suffers from some limitations in modeling relatively complex reservoirs. Some current improvements on this proxy made it a more powerful simulator with updating parameters over time. However, the model's intrinsic uncertainty arisen from simplifying fluid-flow modeling by some limited number of constant parameters is not addressed yet. In this study, this structural limitation of CRM has been addressed by introducing a time-correlated model error, including stochastic and non-stochastic parameters, embedded into this proxy's formulation. The error term's non-stochastic parameters have been tuned to be used in forecasting... 

    A reservoir conductivity evaluation using percolation theory

    , Article Petroleum Science and Technology ; Volume 29, Issue 10 , 2011 , Pages 1041-1053 ; 10916466 (ISSN) Sadeghnejad, S ; Masihi, M ; King, P. R ; Shojaei, A ; Pishvaie, M ; Sharif University of Technology
    Abstract
    Oil reservoirs are very complex with geological heterogeneities that appear on all scales. Proper modeling of the spatial distribution of these heterogeneities is crucial, affecting all aspects of flow and, consequently, the reservoir performance. Reservoir connectivity and conductivity evaluation is of great importance for decision-making on various possible development scenarios including infill drilling projects. This can be addressed by using the percolation theory approach. This statistical approach considers a hypothesis that the reservoir can be split into either permeable (good sands) or impermeable flow units (poor sands) and assumes that the continuity of permeability contrasts... 

    Characterizing the Role of Shale Geometry and Connate Water Saturation on Performance of Polymer Flooding in Heavy Oil Reservoirs: Experimental Observations and Numerical Simulations

    , Article Transport in Porous Media ; Volume 91, Issue 3 , 2012 , Pages 973-998 ; 01693913 (ISSN) Mohammadi, S ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Many heavy oil reservoirs contain discontinuous shales which act as barriers or baffles to flow. However, there is a lack of fundamental understanding about how the shale geometrical characteristics affect the reservoir performance, especially during polymer flooding of heavy oils. In this study, a series of polymer injection processes have been performed on five-spot glass micromodels with different shale geometrical characteristics that are initially saturated with the heavy oil. The available geological characteristics from one of the Iranian oilfields were considered for the construction of the flow patterns by using a controlled-laser technology. Oil recoveries as a function of pore...