Loading...
Search for: rietveld-refinement
0.007 seconds

    Structural and magnetic evaluations of rare-earths (Tb, Pr, Ce, Gd, Y)-doped spinel ferrites for high frequency and switching applications

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 6 , 2021 , Pages 7692-7703 ; 09574522 (ISSN) Akhtar, P ; Akhtar, M. N ; Baqir, M. A ; Ahmad, A ; Khallidoon, M. U ; Farhan, M ; Khan, M. A ; Sharif University of Technology
    Springer  2021
    Abstract
    NiZn nanoferrites doped with rare-earth cations having stoichiometric composition such as Ni0.5Zn0.5R0.02Fe1.98O4 (R = Tb, Pr, Ce, Gd, Y) were prepared by sol–gel technique. The same amount of Ni and Zn with constant ratio of different rare-earths ions were doped to investigate the variations in the properties. X-ray diffraction (XRD), Field emission electron microscope (FESEM), and vibrating sample magnetometer (VSM) were used to investigate the structure, morphology, and magnetic properties of rare-earth doped NiZn nanoferrites, respectively. X-ray density, bulk density, and porosity were also calculated. Phase, crystallite size, structure, d-spacing, lattice parameter, micro strain, and... 

    Structural and magnetic evaluations of rare-earths (Tb, Pr, Ce, Gd, Y)-doped spinel ferrites for high frequency and switching applications

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 6 , 2021 , Pages 7692-7703 ; 09574522 (ISSN) Akhtar, P ; Akhtar, M. N ; Baqir, M. A ; Ahmad, A ; Khallidoon, M. U ; Farhan, M ; Khan, M. A ; Sharif University of Technology
    Springer  2021
    Abstract
    NiZn nanoferrites doped with rare-earth cations having stoichiometric composition such as Ni0.5Zn0.5R0.02Fe1.98O4 (R = Tb, Pr, Ce, Gd, Y) were prepared by sol–gel technique. The same amount of Ni and Zn with constant ratio of different rare-earths ions were doped to investigate the variations in the properties. X-ray diffraction (XRD), Field emission electron microscope (FESEM), and vibrating sample magnetometer (VSM) were used to investigate the structure, morphology, and magnetic properties of rare-earth doped NiZn nanoferrites, respectively. X-ray density, bulk density, and porosity were also calculated. Phase, crystallite size, structure, d-spacing, lattice parameter, micro strain, and... 

    Enhanced structural, electromagnetic and absorption features of CoSm ferrite-metamaterial absorbers through synergistic effects

    , Article Ceramics International ; Volume 48, Issue 20 , 2022 , Pages 29561-29571 ; 02728842 (ISSN) Akhtar, M. N ; Makhdoom, S ; Baqir, M. A ; Yousaf, M ; Khan, M. A ; Batoo, K. M ; Hussain, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Currently, materials with outstanding absorption abilities, such as thin size, better absorbing power, and light weight are the need of industry to resolve the electromagnetic issues. However, the research on optimizing the composition of the material, microstructure and the structure of the absorber are also the important factors for enhancing the absorption features. A metamaterial microwave absorber (MMA) based on nano ferrites with desirable absorption peaks is proposed and simulated. Sol-gel auto combustion route is used to prepare the nanosized Sm doped Co ferrite with Co1+xSmxFe2-2xO4 at x = 0.00, 0.03, 0.06, 0.09, respectively. XRD, VSM, FESEM, and VNA were employed to evaluate the... 

    Investigation of dark and light conductivities in calcium doped bismuth ferrite thin films

    , Article Materials Letters ; Volume 65, Issue 19-20 , October , 2011 , Pages 3086-3088 ; 0167577X (ISSN) Kianinia, M ; Ahadi, K ; Nemati, A ; Sharif University of Technology
    2011
    Abstract
    Electrical conductivities in dark and light were investigated in Calcium doped Bismuth Ferrite thin films. Higher dark conductivity, in the order of 10 times higher than conductivity of bismuth ferrite, was observed for Bi 0.85Ca0.15FeO3 - δ. Structural analyses using Rietveld refinement showed a deviation from volume reduction for Bi 0.85Ca0.15FeO3 - δ which could be the reason of abnormally high conductivity for this compound. Although higher calcium doping reduced conductivity, photoconductivity was observed again. Atomic Force Microscopy investigations showed that surface roughness and grain size decreased with increasing calcium concentration. Enhanced photoconductivity is reported for... 

    Influence of fine structure on the variations of thermal and mechanical properties in flax fibers modified with different alkaline treatment conditions

    , Article Journal of Natural Fibers ; Volume 19, Issue 13 , 2022 , Pages 5239-5257 ; 15440478 (ISSN) Bahrami, R ; Bagheri, R ; Dai, C ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The alkaline treatment condition plays a crucial role in governing the ultimate properties of flax fibers. In this study, flax fibers were modified with mild alkalization and severe mercerization conditions to give fundamental insight into how the molecular-scale changes in cell wall fine structure and cellulose supramolecular structure can affect the macroscopic properties of fibers. SEM, FTIR, XRD, TGA, and DSC techniques were employed to characterize the variations in morphology, composition, crystalline structure, and thermal properties of fibers. Also, tensile tests evaluated their reinforcing performance in polypropylene-based composites. The results indicated that alkalization in 5%... 

    The effect of chemical pressure in rutheno-cuprates

    , Article Physica C: Superconductivity and its Applications ; Volume 470, Issue 4 , 2010 , Pages 285-290 ; 09214534 (ISSN) Nikseresht, N ; Khajehnezhad, A ; Hadipour, H ; Akhavan, M ; Sharif University of Technology
    Abstract
    We have studied the effect of negative chemical pressure in the RuGd 1.5(Ce 0.5-xPr x)Sr 2Cu 2O 10-δ with Pr content of 0.0 ≤ x ≤ 0.2. This is also investigated using the bond length results obtained from the Rietveld refinement analysis. The c parameter and cell volume increase with x for 0.0 ≤ x ≤ 0.15. The width of the resistivity transition also increases with Pr concentration, indicating higher inhomogeneity and oxygen deficiency. The difference in the ionic valences of Pr 3+,4+ and Ce 4+ causing different hole doping, the difference in the ionic radii, and oxygen stoichiometry affect the superconducting transition. The magnetoresistance shows a cusp around 135 K which lies between the... 

    Structural Rietveld refinement and magnetic features of prosademium (Pr) doped Cu nanocrystalline spinel ferrites

    , Article Ceramics International ; Volume 45, Issue 8 , 2019 , Pages 10187-10195 ; 02728842 (ISSN) Niaz Akhtar, M ; Babar, M ; Qamar, S ; ur Rehman, Z ; Azhar Khan, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Pr doped spinel nanoferrites having following composition Cu Pr x Fe 2-x O 4 (x = 0, 0.25, 0.50, 0.75, 1.00) were synthesized using sol-gel route. Prosademium (Pr) which is a rare earth metal was doped to tailor the properties of the Cu spinel nanoferrites. Characterization tools such as FTIR, XRD, FESEM and VSM were employed to investigate the phase, absorption bands, structure, microstructure and magnetic properties. FTIR was used to see the absorption bands and force constants of the Pr doped Cu spinel nanoferrites. Crystallite size, lattice parameters, cell volume and micro strains were determined from XRD data. Bulk density, X-ray density and porosity of the Pr doped Cu spinel... 

    Structural rietveld refinement, morphological and magnetic features of Cu doped Co–]Ce nanocrystalline ferrites for high frequency applications

    , Article Physica B: Condensed Matter ; Volume 561 , 2019 , Pages 121-131 ; 09214526 (ISSN) Niaz Akhtar, M ; Khan, A. A ; Naeem Akhtar, M ; Ahmad, M ; Azhar Khan, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Copper (Cu) substituted Co–]Ce nanoferrites with nominal composition of Co 1-x Cu x Ce 0.05 Fe 1.95 O 4 (x = 0.00, 0.25, 0.50, 0.75, 1.00) were prepared by sol-gel route. The sintering of the Cu doped Co–]Ce nanoferrites was done at 700 °C to investigate the desired properties of the Cu doped Co–]Ce nanoferrites. The combination of transition metal (Cu) and rare earth (Ce) were employed to tailor the characteristics of the spinel ferrites. The constant ratio of rare earth and systematic doping of Cu in Co ferrite was incorporated to see the effects of these ions in spinel ferrite. FTIR, FESEM, XRD and VSM were used to study the vibrational bands, phase, morphology, structure and magnetic...