Loading...
Search for: ritz-method
0.007 seconds
Total 21 records

    Analysis of concrete shallow funicular shells of rectangular plan

    , Article Curved and Layered Structures ; Volume 6, Issue 1 , 2019 , Pages 229-235 ; 23537396 (ISSN) Sabermahany, H ; Rasouli, E ; Mofid, M ; Sharif University of Technology
    De Gruyter Open Ltd  2019
    Abstract
    Analysis of concrete shallow funicular shells of rectangular plan with simply supported boundary conditions under static loads is performed using the Ritz method. Double Fourier series with the unknown constant coefficients are assumed for the displacement components of the shell and their unknown coefficients are determined such that the potential energy of the shell becomes minimum. The solution is presented in a simple form and is suitable for practical applications. The responses of rectangular-plan concrete shallow funicular shells including deflections, strains, internal forces, internal moments and stresses could be easily determined using the proposed semi-analytical method. The Ritz... 

    Analysis of concrete shallow funicular shells of rectangular plan

    , Article Curved and Layered Structures ; Volume 6, Issue 1 , 2019 , Pages 229-235 ; 23537396 (ISSN) Sabermahany, H ; Rasouli, E ; Mofid, M ; Sharif University of Technology
    De Gruyter Open Ltd  2019
    Abstract
    Analysis of concrete shallow funicular shells of rectangular plan with simply supported boundary conditions under static loads is performed using the Ritz method. Double Fourier series with the unknown constant coefficients are assumed for the displacement components of the shell and their unknown coefficients are determined such that the potential energy of the shell becomes minimum. The solution is presented in a simple form and is suitable for practical applications. The responses of rectangular-plan concrete shallow funicular shells including deflections, strains, internal forces, internal moments and stresses could be easily determined using the proposed semi-analytical method. The Ritz... 

    Elastic collapse of thin long cylindrical shells under external pressure

    , Article Thin-Walled Structures ; Volume 124 , 2018 , Pages 81-87 ; 02638231 (ISSN) Salahshour, S ; Fallah, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper investigates local elastic buckling of thin long cylindrical shells under external pressure. Based on Donnell's and Sanders’ theories of thin shells and von Karman nonlinearity assumptions, the potential energy is derived. The buckling load and curves of the static equilibrium path are obtained using the Ritz method. The results are validated with the existing ones in the literature. Furthermore, the case where the pressure is perpendicular to the deformed state is compared with a dead loading. It is demonstrated that the former yields a lower critical pressure in both shell theories. © 2017 Elsevier Ltd  

    Investigation of Local Buckling in Marine Pipelines under External Pressure

    , M.Sc. Thesis Sharif University of Technology Salahshoor Langroudi, Soheil (Author) ; Fallah Rajabzadeh, Famida (Supervisor) ; Seef, Mohammad Saeed (Co-Advisor)
    Abstract
    To keep up with the growing demands for energy, the oil and gas industry ventures into deeper waters. This increases complexity of offshore projects. Part of this complexity is due to the resistance of a pipeline against local buckling collapse due to external pressure that is more significant in higher pipe laying depth and consequently higher external pressure. Pipeline response to external pressure is an important factor in design of marine pipeline.Local buckling of a pipeline is the buckling behaviour within the pipeline cross section. Other types of buckling behaviour such as upheaval and lateralbuckling are not in the scope of this thesis.In this thesis, the installing pipeline is... 

    Elasto-plastic Behavior, Buckling and Stability Analysis of Sandwich Cylindrical Shell Panel under Axial Compression and Lateral Uniform Pressure

    , Ph.D. Dissertation Sharif University of Technology Shokrollahi, Hassan (Author) ; Kargarnovin, Mohammad Hassan (Supervisor) ; Fallah Rajabzadeh, Famida (Supervisor) ; Naghdabadi, Reza (Co-Advisor)
    Abstract
    In this dissertation, elasto-plastic analysis of deformation, buckling and stability of sandwich cylindrical shell panel with orthotropic core under axial compression and lateral uniform pressure is perfomed. A new study on behavior of sandwich cylindrical shell panels under elasto-plastic deformation is done. In contrast of available analyses in which the core layer assumed to be isotropic and elastic, present analysis includes the sandwich shell having orthotropic elasto-plastic core. The deformation analysis of sandwich shell is performed based on two different theories; one is adopted for sandwiches having a stiff core and the other is proper for sandwiches having a flexible core. Based... 

    Buckling of Laminated Composite Plates with Elastically Restrained Boundary Conditions

    , M.Sc. Thesis Sharif University of Technology Rahgozar, Meysam (Author) ; Kochakzadeh, Mohammad Ali (Supervisor)
    Abstract
    This paper presents a unified solution to buckling analysis of rectangular symmetrically laminated composite plates with elastically restrained edges. The plates are subjected to biaxial compression and boundary conditions are simulated by employing uniform distribution of linear and rotational springs at all edges. The buckling loads and corresponding mode shapes are obtained based on classical lamination theory and using the Ritz method with simple polynomials as deflection function without any auxiliary functions. The verifications of current study are carried out with available combinations of classic boundary conditions in the literature. Through parametric study with wide range of... 

    Frequency response calculation of non-linear torsional vibration in gear systems

    , Article Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics ; Volume 222, Issue 1 , 2008 , Pages 49-60 ; 14644193 (ISSN) Farshidianfar, A ; Moeenfard, H ; Rafsanjani, A ; Sharif University of Technology
    2008
    Abstract
    The current paper focuses on the non-linear torsional vibration of a one-stage transmission gear system. Four different methods have been applied for solution of the equation of motion; the discretization method, the perturbation method, the Ritz method, and the stepwise time integration of the equation of motion. The time and frequency results from these analyses have been compared with each other, as well as those reported in literatures. Although all of these methods are accurate and computationally effective for finding the main spectral contribution, however, only the discretization method and the step-wise time-integration model are able to identify the other frequency components. ©... 

    Nonlinear elasto-plastic analysis of a sandwich cylindrical shell with core plasticity included

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 229, Issue 2 , 2015 , Pages 205-215 ; 09544062 (ISSN) Kargarnovin, M. H ; Shokrollahi, H ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this paper, static response of a sandwich cylindrical shell under elasto-plastic deformation is investigated. The faces are made of some isotropic materials and the core is made of an orthotropic material both with linear work hardening behavior. The faces are modeled as thin cylindrical shells obeying the Kirchhoff-Love assumptions. The core material is modeled as a special orthotropic solid in which its in-plane stresses are assumed to be negligible. The Prandtl-Reuss plastic flow theory and von Mises yield criterion are used in the analysis. The governing equations are derived using the principle of virtual displacements. Using Ritz method, the equations are solved for deformation... 

    Low-velocity Impact Response of FML Beams with Considering Plasticity of Metal

    , M.Sc. Thesis Sharif University of Technology Rashedi, Hossein (Author) ; Koochakzadeh, Mohammad Ali (Supervisor)
    Abstract
    In this thesis an analytical model is applied to the dynamic response of fiber-metal laminate beams subjected to low-velocity impact. By using quasi-static consider-tions, a static model is developed using first order shear deformation beam theory and minimum total potential energy. In the next step, this static model is applied to the one degree of freedom non-linear spring-mass system for developing a model to predict dynamic response of low-velocity impact with the inclusion of material plasticity. By new explicit and simple expression, load-deflection curve, velocity-deflection curve, force-time history and deflection-time history can be derived. By using this analytical approach... 

    Application of Composite FRP Decks in Building Structures

    , M.Sc. Thesis Sharif University of Technology Sadr Ara, Ali (Author) ; Mofid, Masood (Supervisor)
    Abstract
    This study is devoted to the analysis and design of a recently proposed steel-FRP deck system. A methodology is being proposed to analysis the elastic behavior of the proposed deck. In this method the deck is modeled as an equivalent orthotropic plate which is constrained by rotational springs along its edges. An analytical model of the proposed deck is derived by using Rayleigh-Ritz method where the primary Rayleigh-Ritz shape functions are generated from orthonormal polynomials by using Gram-Schmidt procedure. The results of the proposed methodology show good agreement with finite element analysis results. In order to test the applicability of the proposed deck as buildings flooring... 

    Vibration and Flutter Analysis of Sandwich Shells and Plates with Fractional Viscoelastic Core

    , Ph.D. Dissertation Sharif University of Technology Permoon, Mohammad Reza (Author) ; Hadadpour, Hassan (Supervisor)
    Abstract
    The vibration and flutter characteristics of sandwich shells and plates with constrained viscoelastic layer are presented. The mechanical properties of viscoelastic core is modeled using fractional order model and the thin shells theory has been used to obtain the structural equations of the outer layers. Linear piston theory has also been used for aerodynamic modeling. The equations governing the vibrations and flutter of shells and plates are obtained using Newton method and in some cases using the energy method. The Rayleigh-Ritz method is implemented to solve the discretized governing equations for linear examples and the method of multiple scales is used to solve the nonlinear ordinary... 

    Forced vibration of delaminated Timoshenko beams subjected to a moving load

    , Article Science and Engineering of Composite Materials ; Volume 19, Issue 2 , June , 2012 , Pages 145-157 ; 0334181X (ISSN) Kargarnovin, M. H ; Ahmadian, M. T ; Jafari-Talookolaeia, R. A ; Sharif University of Technology
    Abstract
    A composite beam with single delamination under the action of moving load has been modeled accounting for the Poisson's effect, shear deformation, and rotary inertia. The existence of the delamination changes the stiffness of the structure, and this affects the dynamic response of the structure. We have used a constrained mode to simulate the behavior between the delaminated surfaces. Based on this mode, eigensolution technique is used to obtain the natural frequencies and their corresponding mode shapes for the delaminated beam. Then, the Ritz method is adopted to derive the dynamic response of the beam subjected to a moving load. The obtained results for the free and forced vibrations of... 

    Geometrically non-linear thermoelastic analysis of functionally graded shells using finite element method

    , Article International Journal for Numerical Methods in Engineering ; Volume 72, Issue 8 , 2007 , Pages 964-986 ; 00295981 (ISSN) Hosseini Kordkheili, S. A ; Naghdabadi, R ; Sharif University of Technology
    2007
    Abstract
    A finite element formulation governing the geometrically non-linear thermoclastic behaviour of plates and shells made of functionally graded materials is derived in this paper using the updated Lagrangian approach. Derivation of the formulation is based on rewriting the Green-Lagrange strain as well as the 2nd Piola-Kirchhoff stress as two second-order functions in terms of a through-the-thickness parameter. Material properties are assumed to vary through the thickness according to the commonly used power law distribution of the volume fraction of the constituents. Within a non-linear finite element analysis framework, the main focus of the paper is the proposal of a formulation to account... 

    Effect of axially graded constraining layer on the free vibration properties of three layered sandwich beams with magnetorheological fluid core

    , Article Composite Structures ; Volume 255 , 2021 ; 02638223 (ISSN) Omidi Soroor, A ; Asgari, M ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The free linear vibration of an adaptive sandwich beam consisting of a frequency and field-dependent magnetorheological fluid core and an axially functionally graded constraining layer is investigated. The Euler-Bernoulli and Timoshenko beam theories are utilized for defining the longitudinal and lateral deformation of the sandwich beam. The Rayleigh-Ritz method is used to derive the frequency-dependent eigenvalue problem through the kinetic and strain energy expressions of the sandwich beam. In order to deal with the frequency dependency of the core, the approached complex eigenmodes method is implemented. The validity of the formulation and solution method is confirmed through comparison... 

    Buckling Analysis of Composite Cylindrical Shells Under External Pressure

    , M.Sc. Thesis Sharif University of Technology Farahbakhshi, Amir (Author) ; Fallah Rajabzadeh, Famida (Supervisor)
    Abstract
    The aim of this project is buckling and post-buckling analysis of laminated composite circular cylindrical shells under external pressure on the basis of different shell theories. Based on Donnell, Love, and Sanders nonlinear shell theories within the first-order shear deformation model and von Karman geometric nonlinearity, the potential energy of composite circular cylindrical shells under external pressure with simply supported edges is extracted and by minimizing of the total potential energy and implementing the Ritz method, buckling pressure, the nonlinear post-buckling analysis and the curves of static equilibrium paths are presented. Furthermore, the effect of the external energy due... 

    Optimization of Actuators Position of a Low Aspect Ratio Variable-camber Wing and Derivation of Its Aerodynamic

    , M.Sc. Thesis Sharif University of Technology Mohammadi Zadeh, Sina (Author) ; Dehghani Firouzabadi, Rouhollah (Supervisor) ; Haddadpour, Hassan (Supervisor)
    Abstract
    Morphing concepts can potentially improve the performance and fuel consumption of modern aircrafts. Smart materials can reduce the weight and complexity, and also are of the best choices to improve efficiency and reliability for realizing morphing wings. Developing of a simple model and optimization of smart piezocomposite actuators position of a thin wing with variable camber is considered. The goal is to gain desired properties in incompressible subsonic regime. Lifting surfaces of a composite wing are simplified using shell model. Keeping the problem simple, a piezocomposite patch is used to change the shell curvature. Basic modes are extracted from FEM software and behavior of bimorph... 

    Multidisciplinary optimization of a stiffened shell by genetic algorithm

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , February , 2012 , Pages 517-530 ; 1738494X (ISSN) Mehrabani, M. M ; Jafari, A. A ; Azadi, M ; Sharif University of Technology
    2012
    Abstract
    Vibration analysis of simply supported rotating cross-ply laminated stiffened cylindrical shell is performed using an energy approach which includes variational and averaging method. The stiffeners include rings and stringers. The equations are obtained by Rayleigh-Ritz method and Sander's relations. To validate the present method, the results are compared to the results available in other literatures. A good adoption is observed in different type of results including isotropic shells, rotating laminated shells, stiffened isotropic shells and stiffened laminated shells. Then, the optimization of parameters due to shell and stiffeners is conducted by genetic algorithm (GA) method under weight... 

    Analysis of large amplitude free vibrations of unsymmetrically laminated composite beams on a nonlinear elastic foundation

    , Article Acta Mechanica ; Volume 219, Issue 1-2 , January , 2011 , Pages 65-75 ; 00015970 (ISSN) Jafari Talookolaei, R. A ; Salarieh, H ; Kargarnovin, M. H ; Sharif University of Technology
    2011
    Abstract
    The large amplitude free vibration of an unsymmetrically laminated composite beam (LCB) on a nonlinear elastic foundation subjected to axial load has been studied. The equation of motion for the axial and transverse deformations of a geometrically nonlinear LCB is derived. Using the Ritz method, the governing equation is reduced to a time-dependent Duffing equation with quadratic and cubic nonlinearities. The homotopy analysis method (HAM) is used to obtain exact expressions for the dynamic response of the LCB. This study shows that the third-order approximation of the HAM leads to highly accurate solutions that are valid for a wide range of vibration amplitudes. The effects of different... 

    Free vibration of generally laminated plates with various shapes

    , Article Polymer Composites ; Volume 32, Issue 3 , FEB , 2011 , Pages 445-454 ; 02728397 (ISSN) Yousefi, P ; Kargarnovin, M. H ; Hosseini Hashemi, S. H ; Sharif University of Technology
    Abstract
    This article is focused on a simple approach for determining the natural frequency and mode shape of laminated angle-ply plates with various shapes by rectangular orthotropy. Since the boundary of the domain for all shapes are not natural to the material coordinate axes it seems appropriate to express the plate displacement amplitude in terms of a polynomial and a general shape function multiplication in the x and y coordinates. The boundary conditions considered are clamped and simply supported edges. The effect of the fiber orientation, layer number, and lamination sequence on the natural frequencies of plates is also considered. The natural frequency determinant has been generated using... 

    Free vibration analysis of functionally graded cylindrical shells stiffened by uniformly and non-uniformly distributed ring stiffeners

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 15 , 2010 , Pages 367-375 ; 9780791843888 (ISBN) Moeini, S. A ; Rahaei Fard, M ; Ahmadian, M. T ; Movahhedy, M. R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    Free vibration analysis of a transversely stiffened circular thin hollow cylinder made of functionally graded materials (FGMs) is analytically evaluated. Functionally graded materials are inhomogeneous composites which are usually made from a mixture of metal and ceramic. The gradient compositional variation of the constituents from one surface to the other provides an elegant solution to the problem of high transverse shear stresses induced when two dissimilar materials with large differences in material properties are bonded. In this paper, application of an FGM made of two different materials is investigated by applying Ritz method. While cylinder is assumed to be thin, strain energy...